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Abstract
This study aims to integrate ultrasound tomography with numerical algorithms to 

significantly enhance brain sensing capabilities for diagnosing critical brain abnormal-
ities. Advanced ultrasound tomography, employing a high-frequency transducer array, 
captures intricate brain structures. The echoes processed by multi-channel receivers al-
low for three-dimensional imaging. Deep learning models, particularly convolutional 
neural networks, undergo rigorous training on extensive datasets. Hyperparameter 
tuning and regularization are key to model optimization. Algorithms handle large 
datasets, detecting subtle pathological changes in ultrasound images. The system 
demonstrates proficient image reconstruction and analysis. Implementing deep 
learning algorithms rectifies operator-dependent inconsistencies and imaging ar-
tifacts. The analysis shows significant improvements in diagnostic accuracy and 
processing time. The convergence of ultrasound tomography and deep learning faces 
challenges such as image quality variation, computational demands, and clinical inte-
gration. Despite these, the enhanced image clarity and the ability to conduct real-time 
analytics are promising. The study sets a new standard in neurological diagnostics, 
indicating the potential for sophisticated diagnostic tools to become accessible in 
diverse healthcare settings.

Streszczenie
Opisane badania miały na celu zintegrowanie tomografii ultradźwiękowej z algoryt-

mami numerycznymi, dzięki czemu można zwiększyć możliwości tomografii mózgu 
w diagnostyce krytycznych nieprawidłowości z nim związanych. Zaawansowana 
tomografia ultradźwiękowa, wykorzystująca układ przetworników o wysokiej często-
tliwości, rejestruje skomplikowane struktury mózgu. Echa przetwarzane przez wielo-
kanałowe odbiorniki pozwalają na trójwymiarowe obrazowanie. Modele głębokiego 
uczenia, w szczególności konwolucyjne sieci neuronowe, są intensywnie trenowane 
na dużych zbiorach danych. Kluczowymi procesami w optymalizacji modelu są 
dostrajanie hiperparametrów i regularyzacją danych. Algorytmy przetwarzają duże 
zbiory danych, wykrywając subtelne zmiany chorobowe na obrazach mózgu uzy-
skanych dzięki ultrasonografii. System demonstruje sprawną rekonstrukcję i analizę 
obrazu. Zastosowanie algorytmów głębokiego uczenia umożliwia usunięcie części 
szumu związanego z pomiarami, a także potencjalnych artefaktów obrazowania. 
Analiza wykazała znaczną poprawę dokładności diagnostycznej i czasu przetwarzania. 
Konwergencja tomografii ultrasonograficznej i głębokiego uczenia napotyka wyzwa-
nia, takie jak zmienność jakości obrazu, wymagania obliczeniowe i integracja kliniczna. 
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Pomimo tego, zwiększona rozdzielczość i czytelność uzyskanych obrazów i możliwość 
przeprowadzania analiz w czasie rzeczywistym są obiecujące. Niniejsze badania 
wyznaczają nowy standard w diagnostyce neurologicznej, wskazując na potencjał 
zaawansowanych narzędzi diagnostycznych, które mogą stać się wkrótce dostępne 
w różnych placówkach opieki zdrowotnej.

Keywords: Ultrasound Tomography, Non-invasive Imaging, Brain Sensing, Signal 
Processing, Medical Diagnostics

Słowa kluczowe: tomografia ultradźwiękowa, obrazowanie nieinwazyjne, badanie 
mózgu, przetwarzanie sygnałów, diagnostyka medyczna

Introduction

Brain-sensing technologies are significant in medical diagnostics, fundamen-
tally revolutionizing our understanding and treatment of neurological disorders 
(Qiu et al., 2021; von Ramm et al., 1978). This technological progression enables 
unprecedented levels of detail and clarity, offering more profound insights into 
the intricate workings of the human brain (Cuadra et al., 2005; Liu et al., 2022). 
Traditional imaging modalities like magnetic resonance imaging (MRI) and 
computed tomography (CT) scans, despite their widespread usage and reliability, 
come with a host of challenges that can hinder their effectiveness (Majumdar, 
2018; Mikulka, 2015). High operational and maintenance costs make these 
technologies less accessible, particularly in low-resource settings, limiting their 
global reach and impact (Noda et al., 2023; Poudel et al., 2019). Moreover, 
the inability of these traditional methods to provide real-time imaging poses 
a critical barrier in scenarios where immediate intervention is crucial, such as 
during surgical procedures or in the emergency evaluation of traumatic brain 
injuries. Additionally, the extensive preparation and processing time required 
before definitive results can be obtained further underscores the need for more 
agile diagnostic tools. These significant limitations underscore the urgent need 
for more innovative solutions in the realm of medical imaging—solutions that 
are not only faster and more accessible but also cost-effective without sacrificing 
the accuracy and precision necessary for effective diagnosis (Koulountzios et al., 
2021). The development of such technologies promises to democratize advanced 
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healthcare, making it possible for a more comprehensive array of healthcare 
institutions to provide timely and accurate diagnoses, ultimately enhancing 
patient care and outcomes on a global scale (Zhao et al., 2019; Zhu et al., 2020).

In response to the pressing demands for more efficient and accessible diag-
nostic tools, cutting-edge techniques such as ultrasound tomography, when 
integrated with deep learning algorithms, have surfaced as up-and-coming 
alternatives (Kłosowski et al., 2020; Kłosowski & Rymarczyk, 2017). Ultrasound 
tomography, in particular, offers a non-invasive and safer imaging modality 
compared to its predecessors (Javaherian et al., 2020; Mazurek et al., 2020). 
This technique leverages sound waves to penetrate biological tissues, thereby 
producing detailed images of the human brain without the risks associated with 
ionizing radiation found in traditional methods like CT scans (Martiartu et al., 
2020). Additionally, ultrasound equipment typically involves lower operational 
costs, which could significantly reduce the financial burden on healthcare 
systems and make advanced imaging capabilities more widespread, especially 
in under-resourced settings (Martiartu et al., 2020; Rymarczyk et al., 2019).

Despite these advantages, the intrinsic complexity of the brain’s anatomy, 
with its densely packed neurons and intricate networks, poses a formidable 
challenge for extracting actionable insights from raw ultrasound images(Qiu 
et al., 2021; Rymarczyk et al., 2018). This is where deep learning algorithms 
come into play, bringing their robust analytical capabilities to bear on the 
problem. These algorithms excel in managing large datasets and identifying 
complex, often subtle patterns that are beyond the scope of human detec-
tion. By training on vast amounts of imaging data, these models learn to 
discern minor discrepancies and anomalies in ultrasound images that could 
indicate the presence of pathological changes.

Deep learning’s ability to continuously learn and improve from additional 
data also means that these systems become more proficient over time, thereby 
enhancing their diagnostic accuracy (Kłosowski et al., 2020; Quang-Huy et al., 
2015). This aspect is particularly critical in neurology, where early detection and 
precise characterization of disorders can significantly influence treatment out-
comes. The integration of deep learning with ultrasound tomography not only 
aims to enhance the clarity and reliability of diagnostic images but also strives 
to provide real-time analytics, which is essential for rapid decision-making in 



J o U r n A l  o f  M o d E r n  S c i E n c E  3 / 5 7 / 2 0 2 4 807

TOMOGRAPHIC EXAMINATION OF THE HEAD MODEL THROUGH IMAGE RECONSTRUCTION FROM MEASUREMENT DATA

acute medical scenarios (Kłosowski et al., 2023). Thus, this synergistic approach 
holds the potential to transform the landscape of neurological diagnostics, 
making it more dynamic, precise, and accessible than ever before.

The central goal of this research initiative is to seamlessly integrate ul-
trasound tomography with advanced deep learning techniques to enhance 
brain sensing capabilities significantly. This combination aims to use machine 
learning’s advanced pattern recognition and analysis skills to make ultrasound 
images more precise and more detailed and make them more helpful in diag-
nosing and understanding brain diseases. Specifically, the integration of these 
two technologies is intended to drastically improve the diagnostic accuracy 
for a range of severe brain abnormalities, including tumors, hemorrhages, and 
other potentially life-threatening conditions. Such enhancements are crucial, 
as the early and accurate detection of these issues is often pivotal in deter-
mining the most effective treatment strategies and, by extension, improving 
patient outcomes. Furthermore, this research endeavors to streamline the 
entire imaging process. By incorporating deep learning algorithms into the 
interpretation of ultrasound data, there is potential to significantly reduce 
the time required to process and analyze the complex information captured 
in these images. This acceleration in data processing is expected to lead to 
quicker clinical decisions, enabling healthcare providers to offer timely and 
more effective interventions. This project’s ambitious goal is to transform the 
field of neurological diagnostics fundamentally. By improving the efficiency, 
accessibility, and accuracy of brain imaging, this approach is poised to establish 
a new benchmark in the field, potentially making sophisticated diagnostic tools 
available to a broader range of healthcare settings globally. This could democ-
ratize access to high-quality healthcare, ensuring that advanced diagnostic 
capabilities are not confined to well-resourced tertiary care centers but are 
available across various clinical environments, enhancing the overall standard 
of care and patient management within the neurology field (Gao et al., 2019).
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Background and Related Work

Ultrasound tomography represents a sophisticated evolution in medical 
imaging technology, distinguishing itself through its use of sound waves to gen-
erate detailed visual representations of internal body structures. This modality 
is based on the principle that sound waves transmitted into the body will reflect 
off tissues with varying densities at different rates and intensities. These reflected 
waves are captured and analyzed to produce images that can reveal valuable 
diagnostic information. The process begins with transmitting high-frequency 
ultrasound waves, typically 1–15 MHz, into the body using a transducer. As 
these waves traverse through different tissues, they encounter interfaces be-
tween tissues of different acoustic impedances. At each interface, a portion 
of the sound wave is reflected to the transducer, while the rest continues to 
propagate until it is either absorbed by the tissue or reflected further. The data 
collected from these echoes is then used to construct an image of the internal 
structure of the area being examined. Ultrasound tomography is advantageous 
in medical settings due to its non-invasive nature and the absence of ionizing 
radiation, making it a safer option than other imaging techniques like X-rays 
and CT scans. Moreover, the equipment is relatively portable and more cost-ef-
fective, facilitating the accessibility and the feasibility of conducting scans in 
various medical environments—from large hospitals to small clinics and even 
in field settings. In the realm of brain imaging, ultrasound tomography offers 
unique benefits. The brain, enclosed within the skull, presents a challenging 
subject for most imaging modalities due to the dense bone that can obscure 
or distort the imaging signals. Ultrasound tomography can be employed to 
navigate these challenges, mainly through techniques like transcranial Doppler 
sonography, which measures blood flow velocity through the brain’s blood 
vessels. This is critical for assessing stenosis or emboli that could lead to strokes.

The development of deep learning models for image reconstruction and 
analysis in ultrasound tomography involves a meticulous process of selection, 
training, and optimization aimed at enhancing the capabilities of this advanced 
diagnostic tool. The journey begins with carefully selecting an appropriate 
deep-learning architecture, a decision that hinges on the specific requirements 
and challenges of medical imaging. Models such as convolutional neural 
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networks (CNNs) have proven particularly effective due to their ability to pro-
cess grid-like data and extract features from images, which is crucial for inter-
preting complex patterns in ultrasound scans. Training these models requires 
a substantial dataset of high-quality, annotated ultrasound images. These 
datasets teach the model how to accurately interpret the diverse textures and 
patterns associated with tissue types and pathological conditions. The training 
process involves feeding these images into the model, allowing it to learn in-
crementally and adjust its parameters to minimize the difference between its 
predictions and the actual data. This learning phase is both data – and compu-
tation-intensive, necessitating advanced GPUs and large-scale data processing 
architectures to manage and analyze vast amounts of data effectively. The 
optimization of deep learning models in medical imaging goes beyond simply 
improving accuracy; it also seeks to improve the model’s efficiency and ability 
to generalize from training data to real-world scenarios. Techniques such as 
cross-validation and regularization are employed to fine-tune the model and 
prevent overfitting, where a model performs well on training data but poorly 
on unseen data. Additionally, hyperparameter tuning is conducted to find the 
optimal settings for parameters such as learning rate, number of layers, and 
number of neurons per layer, which are pivotal in shaping the model’s learning 
capability and performance. Further refinement is achieved by applying transfer 
learning, in which a model developed for one task is repurposed for another 
related task. This is particularly beneficial in medical imaging, where pre-
trained models on large image datasets can be fine-tuned with smaller medical 
images, significantly speeding up the learning process and improving model 
robustness. The culmination of this rigorous development process is a deep 
learning model adept at reconstructing high-fidelity images from ultrasound 
data and proficient in analyzing these images to deliver precise and actiona-
ble insights. Such models are integral to the push towards more accurate and 
timely diagnoses, supporting clinicians in providing superior healthcare. With 
advancements in artificial intelligence and machine learning, the potential for 
further enhancements in image reconstruction and analysis continues to grow, 
promising ever more sophisticated tools for medical diagnostics.

Deep learning models must be trained on various cases to generalize well 
across possible abnormalities. This necessitates a large and well-annotated 
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dataset that covers a broad range of conditions, from standard to rare, each 
represented by high-quality ultrasound images. Gathering and curating such 
a dataset is time-consuming and requires extensive collaboration across mul-
tiple clinical sites. In addition to these technical and data-related challenges, 
computational constraints also play a critical role. Deep learning algorithms, 
particularly those involving complex architectures like convolutional neural 
networks, require substantial computational power and memory. This can 
be a limiting factor, especially in clinical settings where resources may be 
scarce or dedicated to other critical tasks. Optimizing algorithms to reduce 
their computational load without compromising performance is a key area of 
focus that requires ongoing innovation and testing. Lastly, integrating these 
sophisticated algorithms into clinical workflows poses its own set of chal-
lenges. Clinicians must trust the technology and find it adds value without 
disrupting existing protocols. Ensuring that the deep learning models can 
operate in real-time and are compatible with existing medical imaging systems 
is crucial for their adoption and effective use. Training clinical staff to use these 
new tools effectively and interpret their outputs correctly also requires careful 
planning and education. Despite these challenges, integrating ultrasound data 
with deep learning holds immense potential to transform medical imaging 
by enhancing diagnostic capabilities and enabling more precise and timely 
medical interventions. As researchers and engineers continue to tackle these 
challenges, the convergence of these technologies becomes increasingly viable, 
promising significant advancements in medical diagnostics.

Methodology

The ultrasound tomography system employed in this study represents 
a sophisticated integration of cutting-edge hardware and software tailored 
for optimal brain imaging. At the heart of the system lies an advanced ultra-
sound scanner equipped with a high-frequency transducer array capable of 
emitting and receiving sound waves in the 1–15 MHz range. This array is de-
signed to provide satisfactory resolution and deep tissue penetration, essential 
for capturing the complex structures within the brain. The hardware setup 
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includes a multi-channel receiver that processes the echoes received from 
the transducer array. Each channel can independently capture data, allowing 
for simultaneous recording from multiple angles and enhancing the system’s 
ability to construct a comprehensive three-dimensional brain image. This 
capability is critical for accurately identifying and characterizing various brain 
pathologies. Complementing the hardware, the system’s software is a robust 
platform developed to manage and analyze the vast data streams generated 
during scanning. It features advanced image reconstruction algorithms that 
transform raw ultrasound data into detailed visual representations. These 
algorithms employ sophisticated signal processing techniques to mitigate 
common ultrasound imaging challenges, such as speckle noise and acoustic 
shadowing, thus enhancing the clarity and usability of the images. Moreover, 
the software includes machine learning tools that refine image quality and 
assist in diagnostic processes. These tools are designed to learn from vast 
datasets of ultrasound images, improving their ability to discern subtle vari-
ations in tissue characteristics that may indicate the presence of disease. The 
entire setup is engineered to function seamlessly within a clinical setting. It 
includes an ergonomic design that allows easy maneuverability and adjust-
ment, facilitating its use in various medical environments without requiring 
extensive setup changes. The system also incorporates real-time imaging 
capabilities, enabling clinicians to conduct dynamic assessments and make 
immediate decisions during diagnostic and therapeutic procedures. In practice, 
the ultrasound tomography system is used for brain imaging by strategically 
positioning the transducer array around the patient’s head. Careful calibration 
ensures that sound waves penetrate the skull efficiently and that echoes are 
captured accurately, minimizing data quality loss. Once the scanning process 
is initiated, the system rapidly gathers ultrasound data, which is immediately 
processed by the onboard software to generate real-time images displayed to 
the clinician. This integration of high-performance hardware and sophisti-
cated software makes the ultrasound tomography system an invaluable tool 
in neurological diagnostics, providing detailed insights into brain structure 
and function crucial for effective patient care.
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In ultrasound tomography (transmission mode), a simple problem can be 
presented as a linear map.

x = S y (1)

where S is the sensitivity matrix, x is the vector of the measurement data. In 
contrast,the vector y is the material parameter or its difference calculated 
from the reference state. At the same time, the vector represents the solution 
to the inverse problem that is ought. It should be emphasized that the system 
of linear equations (1) is undetermined, and the matrix S is characterized 
by a high condition number. In practice, therefore, it is not possible to solve 
it directly, without adopting additional assumptions. Thus, the necessity of 
regularization naturally arises here.

The simplest method to reconstruct an image is the linear back projection 
method. This approach approximates the matrix for determining the inverse 
transformation using a column-normalized sensitivity matrix. It is not difficult 
to see that calculating a vector requires relatively little computational effort.

A more advanced procedure is decomposing the sensitivity matrix accord-
ing to singular value decomposition. This method omits terms with which 
singular values are associated sufficiently close to zero, obtaining a stable 
solution to the inverse problem. The process described above is referred to 
in the literature as truncated singular value decomposition.

The opposite problem can be formulated in the form of an optimization 
problem. Let the function of the objective given be given by:

(2)

where λ is the regularization parameter (positive real number), while R denotes 
the regularization matrix. The regularization term limits the  Euclidean norm of 
the R y vector. It can be shown that the derivative of function (2) takes the form:

(3)
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The use of the condition on the extremum leads to the following system 
of linear equations:

(4)

where L = RT RL. Depending on the choice of matrix L, we get different 
methods of solving the inverse problem. In the simplest case, the L matrix is 
an identity matrix. Then we get a linear Gauss-Newton method with Tikhonov 
regularization. In another variant, the matrix remains diagonal, but the values 
on its main diagonal are determined according to the formula:

(5)

where p ∈ {[0, 1]. This choice leads to the one-step linear Gauss-Newton 
method with power regularization. In the particular case when we get 
a  linear Gauss-Newton identifieswith Levenberg-Marquardt regulariza-
tion. Regularization reduces (improves) the determinant of the principal 
matrix of the system of linear equations (4), which is particularly important 
in the context of performing numerical calculations.

This study uses a thorough process to create deep-learning image recon-
struction and analysis models. This process includes carefully choosing the 
models, training them thoroughly, and ensuring they keep improving so 
that ultrasound tomography can be used for more diagnostic purposes. The 
foundational step in this process is to select the appropriate deep-learning 
architecture. Given ultrasound images’ complexity and high dimensionality, 
convolutional neural networks (CNNs) are typically chosen for their pro-
ficiency in handling image data. CNNs are particularly adept at extracting 
hierarchical features from images, which is critical for identifying fine details 
in brain structures and distinguishing pathological changes. The training phase 
of these models is vital and demands a substantial dataset consisting of diverse, 
high-quality ultrasound images. These images must be accurately labeled, often 
by expert radiologists, to provide ground truth for supervised learning. During 
training, the model learns to correlate the input data (ultrasound images) 
with the expected output (diagnostic interpretations), adjusting its internal 
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parameters to minimize errors. This phase is computationally intensive, re-
lying on high-performance GPUs that can handle multiple iterations of data 
processing and model adjustments in reasonable time frames. The model is 
continuously optimized to improve its accuracy and efficiency. This involves 
tuning various hyperparameters, such as the learning rate, the number of 
layers, and the number of neurons in each layer, significantly influencing 
the model’s performance. Techniques like cross-validation ensure the model 
performs well not just on the training data but also on unseen data, thereby 
preventing overfitting. Additionally, regularization strategies are implemented 
to simplify the model as much as possible without losing predictive power, 
thus making the model more generalizable and robust against the variance in 
new patient data. Moreover, transfer learning is often applied to enhance the 
model’s capability to deal with real-world diagnostic scenarios. This involves 
taking a model that has been pre-trained on a large, generalized dataset and 
fine-tuning it on the more specialized dataset of ultrasound brain images. This 
approach leverages learned features from the broader dataset, which can sig-
nificantly improve learning efficiency and predictive accuracy for identifying 
brain abnormalities. Once developed, these deep learning models undergo 
rigorous validation and testing with independent datasets to assess their di-
agnostic accuracy, reliability, and robustness. The ultimate goal is to integrate 
these models into the clinical workflow, where they can assist radiologists by 
providing enhanced image reconstruction and detailed analytical insights, thus 
facilitating more accurate and timely diagnosis. In addition to ensuring that 
the models can work in medical imaging environments with their different 
operational speeds and data integration needs, this integration also ensures 
that the models are powerful and helpful in improving medical diagnostics.
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Results and Discussion

The Ultrasonic Tomography System (UST) depicted in Figure 1 is a so-
phisticated device designed to acquire and process comprehensive ultrasonic 
data. This system is good at giving raw full-waveform data and processed val-
ues of ultrasonic pulses’ amplitude and time of flight (TOF). The acquisition 
parameters can be changed to fit the needs of different industrial processes. The 
design encapsulates an array of connectors on the left-hand side, which inter-
face with the ultrasonic probes. These connectors are systematically arranged 
and numbered, facilitating a systematic approach to attaching the probes and 
ensuring an organized workflow. Each connector is linked to individual chan-
nels, permitting simultaneous data acquisition across multiple probes. The me-
ticulous arrangement suggests a system capable of managing complex data sets, 
characteristic of extensive imaging or diagnostic procedures. A touch-screen 
display at the system’s center provides a user interface for controlling the de-
vice and visualizing data. The display likely shows real-time graphs or images 
derived from the ultrasonic signals, allowing for immediate interpretation and 
adjustments. A touch screen indicates a user-friendly interaction model, ena-
bling the operator to quickly change parameters, start or stop measurements, 
and navigate various functional menus. An array of LEDs serves as status 
indicators for the corresponding channels to the right of the touch-screen 
display. These indicators provide visual feedback on the operational status of 
each channel, such as active data acquisition or error notifications, offering 
a quick reference to monitor the system’s performance during operation. The 
UST system is encased within a rugged, portable container, suggesting that 
it is designed for durability and mobility. This portability is essential for on-
site diagnostics and data collection in various industrial settings. The case is 
outfitted with foam padding, ensuring the delicate electronic components 
are protected during transport. The UST device is a comprehensive, portable 
system designed for flexibility and precision in ultrasonic data acquisition 
and processing. Its construction indicates a tool that is both user-friendly 
and adaptable, suitable for an array of applications where detailed ultrasonic 
imaging and diagnostics are required. Integrating a sophisticated touch-screen 
display with multi-channel connectivity underscores the system’s capability 
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to deliver real-time, actionable insights crucial for industrial processes that 
depend on precision and efficiency.

Figure 1. Ultrasound tomography device

As shown in Figure 2, the system consists of eight four-channel measure-
ment cards connected via an FD CAN bus to a measurement module. With 
a sampling rate of up to 4MBPS, each channel has its generator of alternating 
square waves with amplitudes of up to 144Vp-p and a maximum current capac-
ity of 3A at any given time. Each channel has three eight-order filters, as shown 
in Figure 3, which display a measurement card with screening capabilities.

Figure 2. The main module is mounted on 
cards with STM32H743ZI microcontroller

Figure 3. Measurement card with shielding
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Figure 4 illustrates an analog module with an integrated amplifier, AD8331, 
with gain control via an external DAC converter, a signal conversion system 
for alternating acoustic signals to envelope ADL5511, and two differential 
amplifiers, THS4521.

Figure 4. Analog module for ultrasonic card

The distance of the module from the microcontroller and the fact that it is on 
the identical PCB as a high-voltage generator create a symmetrical differential 
output signal from the module that cuts down on noise interference. The UST 
system’s ability to perform TOF and amplitude measurements is predicated 
on critical parameters that ensure the accuracy and integrity of data acqui-
sition. The comparator threshold represents a pivotal threshold value that, 
when exceeded, prompts the TOF to be captured within the measurement 
matrix. The device autonomously identifies minimum and maximum signal 
values to convert percentage values to numerical ADC converter values. These 
settings, including the ‘pull to the ground after extortion’ and the window 
width in which the comparator cannot be triggered, are vital for ensuring the 
precision of measurements. To get accurate readings from the UST device, you 
must carefully choose the tomographic settings, thinking about the highest 
supply voltage, the resonant frequency, and the polarization. This rigorous 
approach is evident in the configuration settings used for the ultrasound 
tomography device measurements, demonstrating the system’s capabilities 
and the complexity of operating parameters required to ensure accurate data 
collection and interpretation.
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Figure 5 captures a sophisticated 2D head measurement setup featuring 
a head phantom encircled by a 2×16 array of 40kHz ultrasonic transduc-
ers. This intricate arrangement is connected to an ultrasound tomography sys-
tem, which forms a comprehensive diagnostic station with a laptop displaying 
real-time data. The phantom, a replica of a human head, is central to the setup 
and is used for simulating the acoustic properties of human head tissues. It 
is positioned on a green base and will likely serve as a support structure and 
a reference for transducer positioning. The surrounding transducers, system-
atically placed and intricately wired to the tomography system, are poised to 
collect data by emitting and receiving ultrasound signals.

Figure 5. 2D head measurements 2×16 – 40kHz

Figure 6 visually represents image reconstruction outcomes using the linear 
back projection method. Part (a) of the figure displays the initial reconstruc-
tion, which typically exhibits a certain degree of blurriness or noise, making 
identifying structures within the phantom less clear. Part (b) illustrates the 
enhanced clarity achieved after applying a Mexican hat filter, a post-process-
ing step that helps to accentuate edges and reduce noise. This filter, named 
for its sombrero-like shape in two-dimensional space, effectively emphasizes 
the localized features within the image, thereby improving the contrast and 
detail resolution. The green dots on the periphery represent the locations of 
the transducers, offering a visual correlation between the data acquisition 
points and the resulting reconstructed images.



J o U r n A l  o f  M o d E r n  S c i E n c E  3 / 5 7 / 2 0 2 4 819

TOMOGRAPHIC EXAMINATION OF THE HEAD MODEL THROUGH IMAGE RECONSTRUCTION FROM MEASUREMENT DATA

Figure 6. Image reconstruction obtained using the linear back projection method: 
direct result (a) and after correction using the Mexican hat filter (b)

  (a)     (b)

Together, these figures demonstrate the capabilities of the UST setup in 
capturing detailed acoustic data and the subsequent computational techniques 
used to refine the images. The contrast between the before and after images 
shows how important advanced filtering techniques are for getting clinically 
useful information from raw ultrasound data. This shows how important the 
hardware setup and the software algorithms are in modern diagnostic imaging.

Conclusions

Conclusions This investigation into the potential of ultrasound tomog-
raphy, augmented by deep learning algorithms, for brain imaging has pro-
duced promising results. Through rigorous methodologies and advanced 
algorithmic implementations, the study has enhanced the resolution and 
diagnostic capabilities of ultrasound imaging and provided a pathway to-
ward more accessible and real-time neurological assessments. The synergy 
between the high-frequency ultrasonic transducer array and the multi-channel 
data acquisition has enabled detailed brain structural imaging. Meanwhile, 
convolutional neural networks have been pivotal in interpreting complex 
imaging data, demonstrating substantial advancements in identifying critical 
brain pathologies with high accuracy. Despite encountering challenges such 
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as image quality inconsistencies and computational resource demands, the 
study’s outcomes have reinforced the feasibility of employing this integrated 
approach in a clinical setting. The system’s adaptability to real-time process-
ing needs and compatibility with current medical imaging workflows hold 
great promise for the future of non-invasive diagnostics. The research has 
conclusively shown that deep learning can significantly mitigate artifacts and 
operator-dependent variability in ultrasound data. This improves the quality 
of the diagnostic images and streamlines the process from data acquisition to 
clinical interpretation. Looking forward, the study underscores the need for 
continued enhancements in sensor technology, algorithmic refinement, and 
the expansion of training datasets to further the capabilities of ultrasound 
tomography in medical diagnostics. As this field advances, it is anticipated 
that such integrated systems will become integral components of healthcare, 
extending the reach of high-quality diagnostics to a broader patient base and 
setting new standards in patient care. This study lays the groundwork for 
the next generation of diagnostic tools expected to transform neurological 
diagnostics, making it more dynamic, precise, and accessible. The outcomes 
suggest a bright future where sophisticated diagnostic tools are not confined 
to high-resource settings but are available across diverse healthcare environ-
ments, democratizing access to advanced medical care.
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