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Abstract
The article presents research findings on developing a medical diagnostic system 

based on electrical impedance tomography technology. One of the key components of 
this project is developing a method for reconstructing the structure of human lungs 
using this technology. The authors of the article compared the effectiveness of two 
different loss functions in training a neural network, which is tasked with accurately 
replicating the lung structure based on electrical impedance tomography data.

The researchers analyzed various approaches to calculating loss functions, includ-
ing cosine embedding loss and InfoNCE loss. They compared the results obtained 
using these two functions to identify which one performs better in lung structure 
reconstruction. The findings of these studies may have significant implications for 
the development of diagnostic systems based on electrical impedance tomography 
and for improving the effectiveness of lung disease diagnosis.

Additionally, the authors discuss potential future directions for the project, includ-
ing possible applications of the research findings in clinical practice. Future research 
efforts may focus on optimizing neural network parameters, exploring alternative loss 
functions, or utilizing advanced machine learning techniques for even more precise 
lung structure reconstruction. The pursuit of improving such diagnostic systems could 
lead to significant advancements in the field of medicine, particularly in diagnosing 
and treating respiratory diseases.

Streszczenie
Artykuł przedstawia wyniki badań związanych z projektowaniem systemu diagno-

stycznego opartego na technologii elektrycznej tomografii impedancyjnej. Jednym 
z głównych elementów tego projektu jest opracowanie metody rekonstrukcji struktury 
ludzkich płuc przy użyciu tej technologii. Autorzy artykułu przeprowadzili porówna-
nie skuteczności dwóch różnych funkcji strat w procesie trenowania sieci neuronowej, 
która ma za zadanie dokładnie odwzorować strukturę płuc na podstawie danych 
z tomografii impedancyjnej elektrycznej.

Badacze analizowali różne podejścia do obliczania funkcji strat, w tym stratę kosi-
nusowego wbudowania oraz stratę informacyjną InfoNCE. Porównanie wyników uzy-
skanych przy użyciu tych dwóch funkcji miało na celu zidentyfikowanie, która z nich 
lepiej sprawdza się w procesie rekonstrukcji struktury płuc. Wyniki tych badań mogą 
mieć istotne znaczenie dla rozwoju systemów diagnostycznych opartych na tomografii 
impedancyjnej elektrycznej oraz dla poprawy skuteczności diagnozowania chorób płuc.

Dodatkowo, autorzy omawiają możliwe dalsze kierunki rozwoju projektu, w tym 
potencjalne zastosowania wyników badań w praktyce klinicznej. Przyszłe prace ba-
dawcze mogą skupić się na optymalizacji parametrów sieci neuronowej, eksploracji in-
nych funkcji strat lub wykorzystaniu zaawansowanych technik uczenia maszynowego 
w celu jeszcze dokładniejszej rekonstrukcji struktury płuc. Dążenie do doskonalenia 
tego typu systemów diagnostycznych może prowadzić do znacznego postępu w dzie-
dzinie medycyny, szczególnie w diagnostyce i leczeniu chorób układu oddechowego.
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Introduction

In the era of technological and medical advancement, lung image recon-
struction has become a crucial medical diagnostic, therapeutic, and research 
tool. The multifaceted application of this advanced imaging process plays 
a fundamental role in identifying, treating, and monitoring lung diseases, 
especially in the context of evolving global health challenges (Li, 2023).

Various medical tests are employed to diagnose diseases such as chest com-
puter tomography, spirometry, arterial blood gas analysis, pulmonary imaging, 
biomarkers in alveolar fluid, lung ultrasonography, chest X-ray, and bronchial 
provocation tests such as those involving methacholine or histamine. To 
undergo the mentioned examinations, patients must follow specific instruc-
tions and be guided on proper behavior during the procedure. Occasionally, 
test results may not be immediately available, as they might require analysis 
and description by the relevant medical professional, which can take some 
time. However, a solution that enables an approximate diagnosis within just 
a few minutes will be presented. We will present electric impedance tomog-
raphy as an alternative to these examinations (Gray, 2021).

Electrical Impedance Tomography (EIT) represents cutting-edge technology 
in lung imaging. This method relies on measuring electrical voltages across 
points and surface electrodes, offering remarkable time resolution for real-time 
tracking of changes. EIT is notably non-invasive, with minimal side effects such 
as no radiation exposure or patient transport requirements (Filipowicz, 2023).

The article presents a detailed 2D model of a male torso, with a specific focus 
on depicting the lungs. The lungs are segmented into three distinct sub-areas: 
bronchi/bronchioles, blood vessels/capillaries surrounding the bronchi, and 
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lung tissue. The paper showcases 2D reconstructions generated by specialized 
neural networks using impedance tomography measurements. The training 
dataset includes lung images captured across various breathing phases and 
comprises ninety shapes. To simulate noise from the measurement device, pro-
portional Gaussian noise at a level of 5% was added to the simulated voltages.

Research Methodology

EIT is an imaging method that employs electrical impedance measurement 
inside the patient’s body to visualize the lung structure. Constructing a male 
torso model is based on the analysis of computed tomography (CT) images, 
which allow for precise visualization of anatomical details (Meerburg, 2020).

The first step involves segmentation, which extracts the torso and lungs from 
the image background using a two-level thresholding process. Subsequently, 
a more detailed segmentation is performed to extract the bronchi/bronchi-
oles. For this purpose, the Otsu method (Goh, 2018) is applied to the area 
with the extracted lungs. Additionally, the structure of blood vessels/capillaries 
surrounding the bronchi in the lungs is simulated using a morphological op-
eration called dilation with a structural element in the shape of a unit circle.

In the first stage, an EIT model is defined. The mesh configuration com-
prises 16-point electrodes positioned along the torso’s boundary, comprising 
6062 elements and 3160 nodes. A triangular mesh is determined based on the 
labelled image (labels from 1 to 6 in Table 1), where pixels are divided into two 
triangles (Figure 1 presents the labelled mesh). Subsequently, the distribution 
on a slice of the human torso is simulated (Filipowicz, 2003).

The second stage involves simulating the permeability distribution on 
a slice of the human torso. Table 1 presents tissue values for the human lung 
model. Then, a dataset is calculated for the neural network. The dataset is derived 
from EIT measurements employing a bipolar stimulation pattern. Simulated 
measurements are obtained using the finite element method (FEM).
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Table 1. Material parameter for distracted fields on mesh

Area name Area index Material parameter Normalized material 
parameter

Torso 1 0.4610 1

Left lung 2 0.1111 0.2410

Right lung 3 0.1111 0.2410

Lungs Bronchi 4 10-10 2.2 . 10-10

Blood vessels along the 
bronchi 5 0.6625 1.4370

Source: (Hasgall, 2022)

Figure 1. Distribution tissues of torse model on a triangle mesh

Figure 2 depicts 50,000 measurement cases, while Figure 3 presents the 
variability of values for each measurement index. It’s worth noting that there 
is little variability for each measurement. The highest variability is around 
0.14, and the lowest is around 0.01, with values in the range of 0.8. The neural 
network’s task will be to distinguish between individual measurements and 
transform them into a vector of length 6062, illustrating the reconstruction 
on the grid depicted in Figure 1.
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Figure 2. Calculate measurement  Figure 3. Range of each index of  
     measurement

Neural network with architecture  
encoder-decoder (He, 2016)

ResNet, or Residual Neural Network, is a groundbreaking architecture in 
deep learning, particularly in image recognition and classification. Introduced 
by Kaiming He et al. in their paper Deep Residual Learning for Image Recognition 
in 2015, ResNet addressed the problem of vanishing gradients in deep neural 
networks, allowing for the training of significantly deeper models (Wójcik, 2024).

The core innovation of ResNet lies in introducing skip connections, also 
known as residual connections, which enable the network to bypass specific 
layers during training. These connections allow the model to learn residual 
mappings rather than directly attempting to understand the desired underlying 
mapping. As a result, ResNet can effectively train extremely deep networks 
(e.g., hundreds of layers) without encountering issues such as performance 
degradation caused by the vanishing gradient problem.

The architecture of ResNet typically consists of a series of convolutional layers 
followed by batch normalization and rectified linear unit (ReLU) activations, 
along with residual blocks containing skip connections. These residual blocks 
are the building blocks of the network and can be stacked to create deeper 
architectures. ResNet has achieved state-of-the-art performance on various im-
age classification tasks, winning the ImageNet Large Scale Visual Recognition 



W S G e  u n i v e r S i t y  o f  a p p l i e d  S c i e n c e  i n  J ó z e f ó W600

M. LALAK-DYBAŁA, B. STEFANIAK, P. OLSZEWSKI

Challenge (ILSVRC) in 2015. Its success has led to widespread adoption and 
is the basis for many subsequent advancements in deep learning architectures 
(Kłosowski, 2023; Miciura, 2024). Lungs were represented by two networks 
with architecture like ResNet and different loss functions for reconstruction.

Loss functions

The Cosine Embedding Loss is a widespread loss function used in deep 
learning, particularly in metric and similarity learning tasks. It is designed 
to optimize the embedding space such that similar samples are pulled closer 
together while dissimilar samples are pushed apart. This loss function is 
particularly effective in scenarios where the similarity between samples is 
essential, such as face recognition or information retrieval tasks.

At its core, the Cosine Embedding Loss measures the cosine similarity 
between pairs of embeddings in the feature space. It encourages embeddings 
of similar samples to have a cosine similarity close to 1, indicating high sim-
ilarity. In contrast, embeddings of dissimilar samples should have a cosine 
similarity close to – 1, indicating dissimilarity. This approach allows for the 
training of deep neural networks to learn discriminative representations that 
capture the underlying similarity structure of the data (Hsu, 2022).

One of the key advantages of the Cosine Embedding Loss is its robustness to 
changes in the scale and magnitude of the embeddings. Unlike Euclidean dis-
tance-based losses, such as contrastive loss or triplet loss, the cosine similarity is 
invariant to the magnitude of the embeddings, focusing solely on the direction of 
the vectors. This property makes the Cosine Embedding Loss particularly well-
suited for tasks where the absolute magnitude of the embeddings is not mean-
ingful, such as in image classification or semantic similarity tasks (Kovacs, 2015).

InfoNCE Loss, or Info Normalized Cross Entropy Loss, is an innovative 
loss function used in representation and self-supervised learning approaches 
in deep neural networks. It is an alternative to traditional loss functions that 
rely on class labels or distances between examples.

InfoNCE Loss is based on the concept of information encoding channels de-
rived from information theory. It involves maximizing the mutual information 
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between positive and negative examples in the embedding space. In other 
words, the loss function aims to maximize the differences in probability dis-
tributions between correct and false pairs of examples (Pielawski, 2020).

The InfoNCE loss function is used with contrastive neural network ar-
chitectures such as Contrastive Predictive Coding (CPC) or Contrastive 
Autoencoder Network (CAN). It is employed to learn features in custom 
unsupervised learning tasks, such as generating representations with anno-
tated and artificially generated negative examples. This approach is beneficial 
in domains where traditional labels are missing or insufficient, and networks 
must learn meaningful features autonomously (Van den Oord, 2019).

The choice of these two loss functions reflects the desire to leverage their 
respective strengths in encouraging the neural network to learn represen-
tations that accurately capture the complex structure of the lungs based on 
electrical impedance tomography (EIT) data. Comparing the performance 
of these two loss functions provides insights into which approach is more 
effective for the specific task and can potentially improve the accuracy of lung 
structure reconstruction in diagnostic applications.

Results

Figures 4, 5, and 6 showcase a sample output of the network’s operation 
with the cosine embedding loss function. In Figure 4, a visualization of the 
simulated permeability distribution is presented, with Gaussian noise added 
proportionally to the data at a level of 5%. Figure 5 illustrates the reconstruc-
tion, while Figure 6 displays the absolute difference between the simulation 
and the reconstruction. The reconstruction portrays a denoised image, with 
the most significant errors observed at the boundaries of value changes.

In image reconstruction, the network aims to accurately recreate the un-
derlying structure while minimizing the impact of noise introduced during 
simulation. Adding Gaussian noise simulates real-world conditions and chal-
lenges faced in practical applications. By visualizing the difference between 
the simulated distribution and the reconstructed image, analysts can assess 
the effectiveness of the network in capturing and representing the essential 
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features of the original data. Furthermore, identifying areas of high error 
can guide improvements in the network architecture or training process to 
enhance the accuracy of future reconstructions.

Figure 4. Simulation Figure 5. Reconstruction

Figure 6. The absolute difference between reconstruction and simulation



J o u r n a l  o f  M o d e r n  S c i e n c e  3 / 5 7 / 2 0 2 4 603

ANALYSIS OF THE EFFECTIVENESS OF TWO DIFFERENT LOSS FUNCTIONS IN TRAINING A NEURAL NETWORK IN LUNG IMAGE…

Figures 7, 8, 9, and 10 provide an in-depth illustration of the network’s per-
formance when utilizing the InfoNCE loss function. Figure 7 showcases the sim-
ulated permeability distribution, mirroring the visualization depicted in Figure 
4. Figure 8 displays the reconstruction process employing the neural network 
with the InfoNCE loss function. Meanwhile, Figure 9, akin to Figure 6, presents 
the absolute disparity between the simulated distribution and the reconstructed 
image. Figurwe 10 exhibits the absolute difference between the reconstruction 
and simulation in a 1D space for a more precise depiction of errors.

Through this analysis, we aim to evaluate the efficacy of the network in cap-
turing the underlying structure while mitigating the impact of noise. Applying 
the InfoNCE loss function facilitates learning meaningful representations, 
enhancing the network’s ability to produce accurate reconstructions. By vi-
sualising the absolute differences, analysts can pinpoint areas of discrepancy 
and assess the network’s performance in detail. Notably, the maximum ab-
solute error observed in Figure 10 is approximately 0.0375, indicative of the 
network’s capability to achieve precise reconstructions with minimal error.

Figure 7. Example simulation Figure 8. Example reconstruction with the    
neural network with InfoNCE loss
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Figure 9. Absolute difference  
reconstruction and simulation

Table 2 compares coefficients for two different loss functions utilized in the 
neural network model. The table includes the Pearson coefficient, the linear 
correlation between two variables, and the mean-squared error (MSE) for 
the reconstruction process.

For the Cosine Embedding loss function, the Pearson coefficient is calcu-
lated to be 0.99716, indicating a robust positive linear correlation between 
the predicted and actual values. Additionally, the MSE for the reconstruction 
is 0.045653697, representing the average squared difference between the 
expected and actual values.

On the other hand, for the InfoNCE loss function, the Pearson coefficient 
is 0.75998, indicating a positive correlation between the predicted and actual 
values, albeit not as strong as with the Cosine Embedding loss function. The 
MSE for the reconstruction is 0.03208109, suggesting a lower average squared 
difference between the predicted and actual values compared to the Cosine 
Embedding loss function.

Figure 10. The absolute difference between 
reconstruction and simulation in 1D space
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Overall, the table provides a quantitative comparison of the performance 
of the two loss functions in terms of their ability to generate accurate recon-
structions and their correlation with the actual values.

Table 2. Compare coefficients for two loss functions
Loss function Pearson coefficient MSE reconstruction

Cosine embedding 0.99716 0.045653697

InfoNCE 0.75998 0.03208109

Conclusions

In the presented analysis, the effectiveness of two different loss functions 
was compared in terms of their impact on the operation of the neural net-
work model. The first of the examined functions was the cosine embedding 
loss, demonstrating a strong positive linear correlation (Pearson coefficient = 
0.99716) between predicted and actual values. The MSE for the reconstruction 
process was 0.045653697, suggesting that the model achieved high accuracy 
in generating reconstructions.

On the other hand, the InfoNCE loss function showed a slightly weaker 
but still positive linear correlation (Pearson coefficient = 0.75998) between 
predicted and actual values. The MSE for this loss function was 0.03208109, 
indicating lower average squared differences between expected and actual 
values compared to the cosine embedding loss function.

The results suggest that the cosine embedding loss function achieved better 
outcomes in generating more accurate reconstructions due to its higher linear 
correlation and slightly higher MSE. However, the InfoNCE loss function also 
demonstrated good effectiveness, suggesting that it may be helpful in other 
contexts or for different purposes. Ultimately, the choice of loss function 
should be carefully considered, considering the specifics of the problem and 
expectations regarding the quality of generated reconstructions.

This methodology enables precise delineation of pulmonary structure and 
its constituent elements, offering significant potential for enhancing diagnostic, 
therapeutic, and monitoring capabilities in lung diseases. Future advancements 
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in this field could leverage artificial intelligence and machine learning tech-
niques to refine and automate image reconstruction, potentially leading to 
even more accurate and efficient diagnoses (Rymarczyk, 2019). Additionally, 
integrating real-time data analytics and telemedicine technologies could fa-
cilitate remote monitoring and consultation, extending access to specialized 
care for patients in remote or underserved areas. Moreover, continued research 
into novel imaging modalities and biomarkers may unlock new insights into 
lung pathophysiology, enabling earlier detection and personalized treatment 
strategies. Overall, the ongoing evolution of lung imaging techniques holds 
promise for improving patient outcomes and advancing the understanding 
and management of respiratory conditions.
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