REVIEW PAPER
Tomographic examination of the head model through image reconstruction from measurement data
 
More details
Hide details
1
WSEI University
 
2
Netrix S.A.
 
 
Submission date: 2024-06-28
 
 
Acceptance date: 2024-07-20
 
 
Publication date: 2024-08-20
 
 
JoMS 2024;57(Numer specjalny 3):803-822
 
KEYWORDS
TOPICS
_Other
 
ABSTRACT
This study aims to integrate ultrasound tomography with numerical algorithms to significantly enhance brain sensing capabilities for diagnosing critical brain abnormalities. Advanced ultrasound tomography, employing a high-frequency transducer array, captures intricate brain structures. The echoes processed by multi-channel receivers allow for three-dimensional imaging. Deep learning models, particularly convolutional neural networks, undergo rigorous training on extensive datasets. Hyperparameter tuning and regularization are key to model optimization. Algorithms handle large datasets, detecting subtle pathological changes in ultrasound images. The system demonstrates proficient image reconstruction and analysis. Implementing deep learning algorithms rectifies operator-dependent inconsistencies and imaging artifacts. The analysis shows significant improvements in diagnostic accuracy and processing time. The convergence of ultrasound tomography and deep learning faces challenges such as image quality variation, computational demands, and clinical integration. Despite these, the enhanced image clarity and the ability to conduct real-time analytics are promising. The study sets a new standard in neurological diagnostics, indicating the potential for sophisticated diagnostic tools to become accessible in diverse healthcare settings.
 
REFERENCES (21)
1.
Cuadra, M. B., Cammoun, L., Butz, T., Cuisenaire, O., Thiran, J. P. (2005). Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Transactions on Medical Imaging, 24(12). https://doi.org/10.1109/TMI.20....
 
2.
Gao, J., Zhang, H., Lu, P., Wang, Z. (2019). An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset. Journal of Healthcare Engineering, 2019, 10. https://doi.org/10.1155/2019/6....
 
3.
Javaherian, A., Lucka, F., Cox, B. T. (2020). Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast. Inverse Problems, 36(12), 125010. https://doi.org/10.1088/1361-6....
 
4.
Kłosowski, G., Rymarczyk, T. (2017). Using neural networks and deep learning algorithms in electrical impedance tomography. Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska, 7(3), 99–102. https://doi.org/10.5604/01.300....
 
5.
Kłosowski, G., Rymarczyk, T., Kania, K., Świć, A., Cieplak, T. (2020). Maintenance of industrial reactors supported by deep learning driven ultrasound tomography. Eksploatacja i Niezawodnosc, 22(1), 138–147. https://doi.org/10.17531/ein.2....
 
6.
Kłosowski, G., Rymarczyk, T., Soleimani, M. (2023). Brain Sensing with Ultrasound Tomography and Deep Learning Algorithms. 1–3. https://doi.org/10.1145/357036....
 
7.
Koulountzios, P., Rymarczyk, T., Soleimani, M. (2021). A Triple-Modality Ultrasound Computed Tomography Based on Full-Waveform Data for Industrial Processes. IEEE Sensors Journal, 21(18), 20896–20909. https://doi.org/10.1109/JSEN.2....
 
8.
Liu, X., Zhang, T., Ye, J., Tian, X., Zhang, W., Yang, B., Dai, M., Xu, C., Fu, F. (2022). Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography. Sensors 2022, Vol. 22, Page 9934, 22(24), 9934. https://doi.org/10.3390/S22249....
 
9.
Majumdar, A. (2018). An autoencoder based formulation for compressed sensing reconstruction. Magnetic Resonance Imaging, 52, 62–68. https://doi.org/10.1016/J.MRI.....
 
10.
Martiartu, N. K., Boehm, C., Fichtner, A. (2020). 3-D Wave-Equation-Based Finite-Frequency Tomography for Ultrasound Computed Tomography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(7), 1332–1343. https://doi.org/10.1109/TUFFC.....
 
11.
Mazurek, M., Rymarczyk, T., Kania, K., Kłosowski, G. (2020). Dedicated algorithm based on discrete cosine transform for the analysis of industrial processes using ultrasound tomography. Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, 82–85. https://doi.org/10.1145/341053....
 
12.
Mikulka, J. (2015). GPU-Accelerated Reconstruction of T2 Maps in Magnetic Resonance Imaging. Measurement Science Review, 15(4), 210–218. https://doi.org/10.1515/msr-20....
 
13.
Noda, T., Jinnai, Y., Tomii, N., Azuma, T. (2023). Blind Signal Separation for Fast Ultrasound Computed Tomography. https://arxiv.org/abs/2304.144....
 
14.
Poudel, J., Lou, Y., Anastasio, M. A. (2019). A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography. Physics in Medicine and Biology, 64(14), 14TR01. https://doi.org/10.1088/1361-6....
 
15.
Qiu, W., Bouakaz, A., Konofagou, E. E., Zheng, H. (2021). Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(1). https://doi.org/10.1109/TUFFC.....
 
16.
Quang-Huy, T., Duc-Tan, T., Tue, H. H., Linh-Trung, N. (2015). Deterministic Compressive Sampling for High-Quality Image Reconstruction of Ultrasound Tomography. https://arxiv.org/abs/1508.006....
 
17.
Rymarczyk, T., Adamkiewicz, P., Polakowski, K., Sikora, J. (2018). Effective ultrasound and radio tomography imaging algorithm for two-dimensional problems. Przegląd Elektrotechniczny, 94(6), 62–69. http://pe.org.pl/abstract_pl.p....
 
18.
Rymarczyk, T., Klosowski, G., Cieplak, T., Kozlowski, E., Kania, K. (2019). Application of a regressive neural network with autoencoder for monochromatic images in ultrasound tomography. 2019 Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019, 156–160. https://doi.org/10.23919/PTZE.....
 
19.
von Ramm, O. T., Smith, S. W., Kisslo, J. A. (1978). Ultrasound Tomography of the Adult Brain. Ultrasound in Medicine, 261–267. https://doi.org/10.1007/978-1-....
 
20.
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237. https://doi.org/10.1016/J.YMSS....
 
21.
Zhu, H., Cheng, C., Yin, H., Li, X., Zuo, P., Ding, J., Lin, F., Wang, J., Zhou, B., Li, Y., Hu, S., Xiong, Y., Wang, B., Wan, G., Yang, X., Yuan, Y. (2020). Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. The Lancet Digital Health, 2(7), e348–e357. https://doi.org/10.1016/s2589-....
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top