PRACA POGLĄDOWA
The use of non-invasive tomographic imaging to monitor lung condition
 
Więcej
Ukryj
1
Lubelska Akademia WSEI
 
 
Data nadesłania: 28-06-2024
 
 
Data akceptacji: 20-07-2024
 
 
Data publikacji: 20-08-2024
 
 
Autor do korespondencji
Małgorzata Lalak-Dybała   

Lubelska Akademia WSEI
 
 
JoMS 2024;57(Numer specjalny 3):783-802
 
SŁOWA KLUCZOWE
DZIEDZINY
_Inne
 
STRESZCZENIE
The development of ultrasound tomography (UST) aimed to significantly enhance the precision and safety of non-invasive UST imaging, particularly for studying crystallization processes in biological tissues. The initiative sought to address the limitations of previous versions by incorporating advanced technological upgrades and providing a more user-friendly interface. The revised system comprises eight four-channel measurement cards interconnected via a high-speed FD CAN bus capable of 8 MBPS data transfer. Each card features a dedicated square wave generator, band-pass filters tailored to specific ultrasonic transducer frequencies, and a sophisticated signal envelope processing unit. The core processing unit is built around a 32-bit STM32G474RE microcontroller, ensuring robust data handling and image reconstruction capabilities. The UST device presented demonstrates improved image clarity and reduced noise interference. The measurement card redesign has achieved a sampling rate of 4 MBPS per channel and includes a two-stage amplification for dynamic range management. Upgraded power components, comprehensive shielding, and the integration of advanced analog switches have led to an enhanced signal-to-noise ratio, pivotal for high-resolution imaging. The advancements presented in the UST device mark a noteworthy progression in ultrasound imaging technology, extending beyond traditional applications. High-speed data collection, precise signal processing, and user-centered design have all come together to make a system that can image crystallization processes more accurately and accurately over and over again.
Licencja
REFERENCJE (22)
1.
Bal, G., Chung, F. J., Schotland, J. C. (2015). Ultrasound modulated bioluminescence tomography and controllability of the radiative transport equation. SIAM Journal on Mathematical Analysis, 48(2), 1332–1347. https://doi.org/10.1137/15M102....
 
2.
Cueto, C., Bates, O., Strong, G., Cudeiro, J., Luporini, F., Agudo, O. C., Gorman, G., Guasch, L., Tang, M.-X. (2021). Stride: a flexible platform for high-performance ultrasound computed tomography. Computer Methods and Programs in Biomedicine, 221. https://doi.org/10.1016/j.cmpb....
 
3.
Dai, H., Penwarden, M., Kirby, R. M., Joshi, S. (2023). Neural Operator Learning for Ultrasound Tomography Inversion. https://arxiv.org/abs/2304.032....
 
4.
Javaherian, A., Lucka, F., Cox, B. T. (2020). Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast. Inverse Problems, 36(12), 125010. https://doi.org/10.1088/1361-6....
 
5.
Khairi, M. T. M., Ibrahim, S., Yunus, M. A. M., Faramarzi, M., Sean, G. P., Pusppanathan, J., Abid, A. (2019). Ultrasound computed tomography for material inspection: Principles, design and applications. Measurement, 146, 490–523. https://doi.org/10.1016/J.MEAS....
 
6.
Koulountzios, P., Rymarczyk, T., Soleimani, M. (2021). A Triple-Modality Ultrasound Computed Tomography Based on Full-Waveform Data for Industrial Processes. IEEE Sensors Journal, 21(18), 20896–20909. https://doi.org/10.1109/JSEN.2....
 
7.
Laitinen, T., Lyyra-Laitinen, T., Huopio, H., Vauhkonen, I., Halonen, T., Hartikainen, J., Niskanen, L., Laakso, M. (2008). Electrocardiographic alterations during hyperinsulinemic hypoglycemia in healthy subjects. Annals of Noninvasive Electrocardiology, 13(2), 97–105. https://doi.org/10.1111/j.1542....
 
8.
Mazurek, M., Rymarczyk, T., Kania, K., Kłosowski, G. (2020). Dedicated algorithm based on discrete cosine transform for the analysis of industrial processes using ultrasound tomography. Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, 82–85. https://doi.org/10.1145/341053....
 
9.
Nagafune, K., Watanabe, S., Shioya, H. (2014). An evolutionary multi-criterion optimization approach utilizing the characteristics of strength distribution for sparse CT image reconstruction. 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems, SCIS 2014 and 15th International Symposium on Advanced Intelligent Systems, ISIS 2014, 353–358. https://doi.org/10.1109/SCIS-I....
 
10.
Qiu, W., Bouakaz, A., Konofagou, E. E., Zheng, H. (2021). Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(1). https://doi.org/10.1109/TUFFC.....
 
11.
Romanowski, A., Łuczak, P., Grudzień, K. (2019). X-ray imaging analysis of silo flow parameters based on trace particles using targeted crowdsourcing. Sensors (Switzerland), 19(15). https://doi.org/10.3390/s19153....
 
12.
Rymarczyk, T. (2019). Tomographic imaging in environmental, industrial and medical applications (1st ed.). Wydawnictwo Naukowe Innovatio Press.
 
13.
Schork, N. (2018). Randomized clinical trials and personalized medicine. Soc. Sci. Med. 1982, 210, 71–73.
 
14.
Shanghai, J., Shuang, Y., Hong, G., Shenghui, S., Binbin, L., Xinyu, H., Xue, Z., Mingfu, Z. (2021). Study on Reconstruction Algorithm of X-ray Fluorescence Computed Tomography based on L1/2-norm and Expectation-Maximum. 2021 19th International Conference on Optical Communications and Networks (ICOCN), 1–3. https://doi.org/10.1109/ICOCN5....
 
15.
Soleimani, M., Rymarczyk, T. (2023). Ultrasound Tomography for Lung Imaging: An Experimental Phantom Study. IEEE Sensors Journal, 23(8). https://doi.org/10.1109/JSEN.2....
 
16.
Tan, C., Jia, H., Liang, G., Wang, X., Niu, W., Dong, F. (2023). Combinational Multimodality Tomography System for Industrial Multiphase Flow Imaging. IEEE Trans. Instrum. Meas., 72, 1–10. https://doi.org/10.1109/TIM.20....
 
17.
Tutschek, B., Braun, T., Chantraine, F., Henrich, W. (2017). Computed tomography and ultrasound to determine fetal head station. Ultrasound in Obstetrics Gynecology, 49(2), 279–280. https://doi.org/10.1002/UOG.17....
 
18.
Wilson, J., Patwari, N. (2010). Radio tomographic imaging with wireless networks. IEEE Transactions on Mobile Computing, 9(5), 621–632. https://doi.org/10.1109/TMC.20....
 
19.
Yetisen, A. K., Martinez-Hurtado, J. L., Ünal, B., Khademhosseini, A., Butt, H. (2018). Wearables in Medicine. In Advanced Materials (Vol. 30, Issue 33). Wiley-VCH Verlag. https://doi.org/10.1002/adma.2....
 
20.
Yigitler, H., Jantti, R., Kaltiokallio, O., Patwari, N. (2017). Detector Based Radio Tomographic Imaging. IEEE Transactions on Mobile Computing, 17(1). https://doi.org/10.1109/tmc.20....
 
21.
Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., Zheng, H. (2016). Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics, 72, 150–157. https://doi.org/10.1016/J.ULTR....
 
22.
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237. https://doi.org.
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top