PL EN
ORIGINAL PAPER
The application of OpenAI Technology in Marketing Activities - A Systematic Literature Review
 
More details
Hide details
1
University of Szczecin
 
These authors had equal contribution to this work
 
 
Submission date: 2024-03-20
 
 
Acceptance date: 2024-12-07
 
 
Publication date: 2024-12-29
 
 
Corresponding author
Joanna Wiśniewska   

University of Szczecin
 
 
JoMS 2024;60(6):392-410
 
KEYWORDS
TOPICS
ABSTRACT
Objectives:
This article aims to assess empirical research papers on the application of OpenAI technology in marketing activities, with the goal of organizing current knowledge in this domain. To achieve this objective, the following questions were addressed: 1. Is there scientific interest in the application of OpenAI technology in marketing activities, and is it extensively discussed in researching works ? 2. What kinds and directions of the empirical researching works on this problem have been taken so far ?

Material and methods:
A study of the popularity of OpenAI in marketing was conducted using Google Trends tools, while a systematic literature review based on Web of Science, Scopus and Elsevier Science Direct databases was conducted using Google Sheets and VOSviewer tools.

Results:
The review highlights the insufficient attention given to application of OpenAI in marketing activities, despite the global interest and growing number of publications concernig that technology. An analysis of citations and co-citations found that the articles examined , although diverse in terms of subject matter and place of publication, had minimal impact on the observed research field.

Conclusions:
The literature review reveals limited exploration of OpenAI technology in marketing activities despite growing interest. While publications vary widely in focus and venue, there is little evidence of significant impact on the research field. Existing literature offers fragmented insights and lacks comprehensive coverage of empirical studies, particularly in marketing. Further research is necessary to investigate specific applications like content creation, customer communication, brand enhancement, and market analysis.

REFERENCES (38)
1.
Asi, A., Wang, S., Eisenstadt, R., Geckt, D., Kuper, Y., Mao, Y., Ronen, R. (2022). An End-to-End Dialogue Summarization System for Sales Calls, 45-53. NAACL 2022 – 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
 
2.
Baber, H., Nair, K., Gupta, R., Gurjar, K. (2023). The beginning of ChatGPT–a systematic and bibliometric review of the literature. Information and Learning Sciences.
 
3.
Baldrati, A., Bertini, M., Uricchio, T., Del Bimbo, A. (2022). Effective conditioned and composed image retrieval combining CLIP-based features, 21434-21442. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
 
4.
Bellan, P., Dragoni, M., Ghidini, C. (2022). Extracting Business Process Entities and Relations from Text Using Pre-trained Language Models and In-Context Learning, 182-199. International Conference on Enterprise Design, Operations, and Computing 2022.
 
5.
Bodas, A., Upadhyay, B., Nadiger, C., Abdelhak, S. (2018). Reinforcement learning for game personalization on edge devices, 119-122. 2018 International Conference on Information and Computer Technologies.
 
6.
Bondielli, A., Passaro, L.C. (2021). Leveraging CLIP for Image Emotion Recognition. CEUR Workshop Proceedings.
 
7.
Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D. (2020). Language models are few-shot learners. Proceedings of the 34th International Conference on Neural Information Processing Systems.
 
8.
Bulut, A., Mahmoud, A. (2023). Generating Campaign Ads & Keywords for Programmatic Advertising, 11, 43557-43565. IEEE Access.
 
9.
Charmchi, M.R.H., Hassanpour, H., Cami, B.R. (2022). Considering User Interests to Provid an Event Base News Stream Framework, 1-5. Proceedings – 2022 8th International Iranian Conference on Signal Processing and Intelligent Systems.
 
10.
Chen, W.Y., Huang, C.C., Lo, T.M., Yuan, W.C., Tsai, H.Y., Cheng, T.F., Chang, F.L. (2020). The Research on Scent and Fragrance in Memory with Machine Learning, 1-2. 2020 IEEE International Conference on Consumer Electronics – Taiwan.
 
11.
Czakon, W. (2011). Metodyka systematycznego przeglądu literatury, 3 (854), 57-61. Przegląd Organizacji.
 
12.
Day, M.-Y., Shaw, S.-R. (2021). AI Customer Service System with Pre-trained Language and Response Ranking Models for University Admissions, 395-401. Proceedings – 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science.
 
13.
Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 4171-4186. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
 
14.
Dwivedi, Y.K., Pandey, N., Currie, W., Micu, A. (2023). Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: practices, challenges and research agenda, 36(1), 1-12. International Journal of Contemporary Hospitality Management.
 
15.
Feldman, P.G., Pan, S., Foulds, J. (2023). The Keyword Explorer Suite: A Toolkit for Understanding Online Populations, 21-24. International Conference on Intelligent User Interfaces.
 
16.
Gao, Y.B., Gao, J.T., Ma, R., Yang, L.D. (2022). Research on user granularity-level personalized social text generation technology, 2294(1). Journal of Physics: Conference Series.
 
17.
Gao, X., Zhang, Y., Galley, M., Brockett, C., Dolan, B. (2020). Dialogue response ranking training with large-scale human feedback data, 386-395. EMNLP 2020 – 2020 Conference on Empirical Methods in Natural Language Processing.
 
18.
Gupta A., Das N. (2022). ProdRev: A DNN framework for empowering customers using generative pre-trained transformers, 895-899. 2022 International Conference on Decision Aid Sciences and Applications.
 
19.
Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study, 3(1), 119-132. International Journal of Intelligent Networks.
 
20.
Hanelt, A., Bohnsack, R., Marz, D., Antunes Marante, C. (2021). A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change, 58(5), 1159-1197. Journal of Management Studies.
 
21.
He, Y., Liao, L., Zhang, Z., Chua, T.-S. (2021). Towards Enriching Responses with Crowd-sourced Knowledge for Task-oriented Dialogue, 3-11. MuCAI 2021 – Proceedings of the 2nd ACM Multimedia Workshop on Multimodal Conversational AI.
 
22.
Karinshak, E., Liu, S.X., Park, J.S., Hancock, J.T. (2023). Working With AI to Persuade: Examining a Large Language Model’s Ability to Generate Pro-Vaccination Messages, 1-29. Proceedings of the ACM on Human-Computer Interaction.
 
23.
Khalil, F., Pipa, G. (2022). Transforming the generative pretrained transformer into augmented business text writer, 9(1). Journal of Big Data.
 
24.
Kublik S., Saboo S. (2023). GPT-3: The Ultimate Guide to Building NLP Products with OpenAI API. Packt Publishing.
 
25.
Lee, C., Kim, J., Lim, J.S. (2023). How does fact-check labeling impact the evaluations of inadvertently placed brand ads?, 1-17. Social Science Journal.
 
26.
Leippold, M. (2023). Sentiment spin: Attacking financial sentiment with GPT-3, 55. Finance Research Letters.
 
27.
Marlow, R., Wood, D. (2021). Ghost in the machine or monkey with a typewriter-generating titles for Christmas research articles in The BMJ using artificial intelligence: observational study, 375. BMJ-British Medical Journal.
 
28.
Moher, D., Liberati. A., Tetzlaff, J., Altman, D.G. The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement, 6(7): e1000097. PLoS Med.
 
29.
Neef, M.W., Corley, E.A. (2009). 35 Years and 160,000 Articles: A Bibliometric Exploration of Evolution of Ecology, 80 (3), 657-682. Scientometrics.
 
30.
Perez-Castro, A., Martínez-Torres, M.R., Toral, S.L. (2023). Efficiency of automatic text generators for online review content generation, 189. Technological Forecasting and Social Change.
 
31.
Pradana, M., Elisa, H. P., Syarifuddin, S. (2023). Discussing ChatGPT in education: A literature review and bibliometric analysis, 10(2), 1-11. Cogent Education.
 
32.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I. (2019). Language models are unsupervised multitask learners, 1(8). OpenAI blog.
 
33.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, 21, 1-67. Journal of Machine Learning Research, Microtome Publishing.
 
34.
Rahaman, M.S., Ahsan, M.T., Anjum, N., Terano, H.J.R., Rahman, M.M. (2023). From ChatGPT-3 to GPT-4: a significant advancement in ai-driven NLP tools, 2(1), 1-11. Journal of Engineering and Emerging Technologies.
 
35.
Rosset, C., Xiong, C., Song, X., Campos, D., Craswell, N., Tiwary, S., Bennett, P. (2020). Leading Conversational Search by Suggesting Useful Questions, 1160-1170. The Web Conference 2020 – Proceedings of the World Wide Web Conference.
 
36.
Roy, K., Goyal, P., Pandey, M. (2021). Attribute Value Generation from Product Title using Language Models, 13-17. ECNLP 2021 – 4th Workshop on e-Commerce and NLP, Proceedings.
 
37.
Schmälzle, R., Wilcox, S. (2022). Harnessing Artificial Intelligence for Health Message Generation: The Folic Acid Message Engine, 24(1). Journal of Medical Internet Research.
 
38.
Taecharungroj, V. (2023). What Can ChatGPT Do? Analyzing Early Reactions to the Innovative AI Chatbot on Twitter, 7(1). Big Data and Cognitive Computing.
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top