PL EN
Fair division in Shaplay sense - case studies
 
More details
Hide details
1
Lublin University of Technology
 
 
Submission date: 2023-11-30
 
 
Acceptance date: 2023-12-01
 
 
Publication date: 2023-12-18
 
 
Corresponding author
Agnieszka Surowiec   

Lublin University of Technology
 
 
JoMS 2023;54(Numer specjalny 5):97-114
 
KEYWORDS
TOPICS
ABSTRACT
Objectives:
The aim of the work is to determine the Shapley value for the considered cases, important from the point of view of financial management.

Material and methods:
Case descriptions, game theory, Shapley value

Results:
In the examples considered regarding the construction of a private common road and the division of profits between the company owner and his employees, the Shapley value represents a fair division, but contrary to the social sense of justice. In the first example, a pre-imposed, equal or proportional division of costs could only satisfy one of the considered players, while in the second, although the example is idealized (e.g. it does not take into account competition on the market), the result allows to justify why the boss (company owner, president) earns incomparably more than his employees.

Conclusions:
The work shows that even in a very simplified situation, various division concepts are possible, which may contradict each other and other requirements for decision-making methods.
REFERENCES (27)
1.
Aumann, R. J., Maschler, M. (1964), The Bargaining Set for Cooperative Games, Advances in Game Theory (Annals of Mathematics Studies, 52) (M. Dresher, L. S. Shapley, and A. W. Tucker, eds.), Princeton: Princeton University Press, 443–476.
 
2.
Aumann, R. J., Peleg, B. (1960), Von Neumann–Morgenstern Solutions to Cooperative Games without Side Payments, Bulletin of the American Mathematical Society, 66, 173–179.
 
3.
Brams, S. J., Kilgour, D. M., Klamler, C. (2014). Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm, Notices of the American Mathematical Society, 61, 130-141.
 
4.
Brams, S. J., Taylor, A .D. (1996). Fair Division: From cake-cutting to dispute resolution. Cambridge University Press, Cambridge.
 
5.
Brams, S. J., Taylor, A. D. (2000). The Win-Win Solution. Guaranteeing Fair Shares to Everybody, W.W. Norton & Company, New York, London.
 
6.
Cesari, G., Algaba, E., Moretti, S., Nepomuceno, J. A. (2018). An application of the Shapley value to the analysis of co-expression networks. Appl Netw Sci 3, 35. https://doi.org/10.1007/s41109....
 
7.
Chaigneau, P., Edmans A., Gottlieb D., A Theory of Fair CEO Pay, ECGI Working Paper Series in Finance, Paper N° 865/2022, March 2023.
 
8.
Dianchun, J. (1997). How’s game theory rewrite the micro economics, Economist, vol. 6, pp. 86-95.
 
9.
Gabaix, X, Landier, A. (2008). Why has CEO Pay Increased So Much? The Quarterly Journal of Economics, vol. 123, Issue 1, 49–100, https://doi.org/10.1162/qjec.2....
 
10.
Hammerstein, P., Leimar, O. (2015). Chapter 11 – Evolutionary Game Theory in Biology, Editor(s): H. Peyton Young, Shmuel Zamir, Handbook of Game Theory with Economic Applications, Elsevier, Volume 4, 575-617, https://doi.org/10.1016/B978-0....
 
11.
Hausken, K. (2020). The Shapley value of coalitions to other coalitions. Humanit Soc Sci Commun 7, 104. https://doi.org/10.1057/s41599....
 
12.
Jasiński, M. (2009). Decyzje w dużych grupach – gry oceaniczne w naukach społecznych. Decyzje, 12, 25-51.
 
13.
Kruk, M., Artiemjew, P., Paturej, E. (2021) The application of game theory-based machine learning modelling to assess climate variability effects on the sensitivity of lagoon ecosystem parameters. Ecological Informatics, Vol. 66, 101462, https://doi.org/10.1016/j.ecoi....
 
14.
Leimar, O., McNamara J. M. (2023). Game theory in biology: 50 years and onwards. Phil. Trans. R. Soc. B 378:20210509. https://doi.org/10.1098/rstb.2....
 
15.
Malawski, M. (2008). Wartość Shapleya. Decyzje, 10, 27-58.
 
16.
Nash, J. F. (1950). Equilibrium points in n-person games. Mathematics, vol. 36, 48-49.
 
17.
Neuman, J. von & Morgenstern, O. (1944). Theory of Games and Economic Behavior, Princeton University Press, Princeton.
 
18.
Shapley, L.S. (1953). Value for n-person games. Contributions to the Theory of Games, vol. II, by H.W. Kuhn and A.W. Tucker, editors. Annals of Mathematical Studies v. 28, Princeton University Press, 307–317.
 
19.
Simon, H.A., (1976). Działanie administracji: proces podejmowania decyzji w organizacjach administracyjnych. Państwowe Wydawnictwo Naukowe, Warszawa.
 
20.
Steinhaus, H. (1948). The Problem of Fair Division, Econometrica 16, 101-104.
 
21.
Steinhaus, H. (1949). Sur la division pragmatique Econometrica 17: 315-319.
 
22.
Straffin, P.D. (2004). Teoria gier. Wydawnictwo Naukowe ,,Scholar”, Warszawa.
 
23.
Weron, R. (2006). Hugo Steinhaus: matematyk, humanista i… popularyzator sprawiedliwego podziału tortu. Decyzje, 6: 113-118.
 
24.
Wilhelm, P. G. (1993). Application of Distributive Justice Theory to the CEO Pay Problem: Recommendations for Reform, Journal of Business Ethics, Vol. 12, No. 6, 469-482.
 
25.
Dz. U. z 2021 r. poz. 1899 ze zm.
 
26.
https://businessinsider.com.pl..., data dostępu 2023.11.28.
 
27.
https://www.bankier.pl/wiadomo..., data dostępu 2023.11.28.
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top