REVIEW PAPER
Optimization of diagnostic processes using decision trees in ECG data analysis - lets web system analysis engine
 
More details
Hide details
1
WSEI University
 
2
Lublin University of Technology
 
 
Submission date: 2024-06-21
 
 
Acceptance date: 2024-07-16
 
 
Publication date: 2024-08-20
 
 
JoMS 2024;57(Numer specjalny 3):563-579
 
KEYWORDS
TOPICS
_Other
 
ABSTRACT
The article presents the capabilities of the LETS Web system, which uses Internet of Things (IoT) technology to analyze medical data to optimize diagnostic processes. The article focuses on implementing decision tree algorithms that analyze electrocardiogram (ECG) data to identify cardiac conditions. The study used three variants of decision trees that differed in structure and ECG parameters. Each variant was tested for its ability to accurately classify cardiac health conditions ranging from simple arrhythmias to complex arrhythmic changes. The study showed that modifications to the structure of the decision trees significantly affected their effectiveness. The most advanced variant of the tree, using multivariate data analysis, showed the highest efficiency in diagnosing complex conditions. The effectiveness of the different variants of decision trees varied, confirming the importance of selecting the suitable diagnostic model for the specifics of the data and clinical goals.
 
REFERENCES (16)
1.
Ahmed, M. N., Toor, A. S., O’Neil, K. (2017). Friedland, D., Cognitive Computing and the Future of Health Care Cognitive Computing and the Future of Healthcare: The Cognitive Power of IBM Watson Has the Potential to Transform Global Personalized Medicine, in IEEE Pulse, vol. 8, no. 3, pp. 4-9, doi: 10.1109/MPUL.2017.2678098.
 
2.
Ali, T, et al. (2020). The Intelligent Medical Platform: A Novel Dialogue-Based Platform for Health-Care Services, in Computer, vol. 53, no. 2, pp. 35-45, doi: 10.1109/MC.2019.2924393.
 
3.
Breiman, L, Friedman, J., Stone, C.J., Olshen, R.A. (1984). Classification and Regression Trees, Taylor & Francis Ltd.
 
4.
Chopannejad, S., Sadoughi, F., Bagherzadeh, R., Shekarchi, S. (2022). Predicting Major Adverse Cardiovascular Events in Acute Coronary Syndrome: A Scoping Review of Machine Learning Approaches. Appl Clin Inform. 2022 May;13(3):720-740. doi: 10.1055/a-1863-1589. Epub. PMID: 35617971; PMCID: PMC9329142.
 
5.
Choudhuri, A., Chatterjee, J. M., Garg, S. (2019). Chapter 6 – Internet of Things in Healthcare: A Brief Overview, Editor(s): Valentina E. Balas, Le Hoang Son, Sudan Jha, Manju Khari, Raghvendra Kumar, Internet of Things in Biomedical Engineering, Academic Press.
 
6.
Christov, I.I. (2004).Real-time electrocardiogram QRS detection using a combined adaptive threshold. BioMed Eng OnLine 3, 28. https://doi.org/10.1186/1475-9....
 
7.
Gregório, T., Pipa, S., Cavaleiro, P., Atanásio, G., Albuquerque, I., Chaves, P.C., Azevedo, L. (2018).Prognostic models for intracerebral bleeding: systematic review and meta-analysis. BMC Med Res Methodol;18(1):145. Doi: 10.1186/s12874-018-0613-8. PMID: 30458727; PMCID: PMC6247734.
 
8.
Hireš, M.,Bugata, P.,Gazda, M.,Hreško, D., Kanász, R.,Vavrek, L., Drotár, P.(2022).Brief Overview of Neural Networks for Medical Applications. Acta Electrotechnica et Informatica, 22(2) 34-44. https://doi.org/10.2478/aei-20....
 
9.
Khera, R., Haimovich, J., Hurley, N.C., et al. (2021). Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction. JAMA Cardiol;6(6):633–641. doi:10.1001/jamacardio.2021.0122.
 
10.
Przysucha, B., Rymarczyk, T., Wójcik, D. (2022). Detection of cardiac arrhythmias in body surface potential mapping (BSMP) measurements, Przegląd Elektrotechniczny, R. 98, nr 1, 115-118.
 
11.
Quinlan, J.R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, Inc.
 
12.
Selker, H.P., Griffith, J.L., Patil, S., Long, W.J., D’Agostino, R.B. (1995). A comparison of the performance of mathematical predictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients. J Investig Med.;43(5):468-76. PMID: 8528758.
 
13.
Shanthi, D., Lalitha, A., Lokeshwari, G. (2020). IoT Based Medical Diagnosis Expert System Application. In: Pandian, A.P., Senjyu, T., Islam, S.M.S., Wang, H. (eds) Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI – 2018). ICCBI 2018. Lecture Notes on Data Engineering and Communications Technologies, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-....
 
14.
Wójcik, D., Woś, M., Kłosowski, G., Rymarczyk, T. (2021). A Complete System For An Automated Ecg Diagnosis, Przegląd Elektrotechniczny, R. 97, 162-165.
 
15.
Wulff, H.R., Gotzsche, P.C. (2000) Rational Diagnosis and Treatment: Evidence-based Clinical Decision Making Hardcover Wiley-Blackwell.
 
16.
Xue, Q., Hu, Y.H., Tompkins, W.J. (1992).Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans Biomed Eng.;39(4):317-29. doi: 10.1109/10.126604. PMID: 1592397.
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top