PL EN
REVIEW PAPER
Monitoring the health of patients using a nodal potential map
 
More details
Hide details
1
WSEI University, Lublin, Poland
 
2
Lublin University of Technology, Lublin, Poland
 
3
Netrix S.A., Poland
 
 
Submission date: 2024-06-21
 
 
Acceptance date: 2024-07-16
 
 
Publication date: 2024-08-20
 
 
Corresponding author
Katarzyna Iskra   

WSEI University, Lublin, Poland
 
 
JoMS 2024;57(Numer specjalny 3):701-712
 
KEYWORDS
TOPICS
_Other
 
ABSTRACT
Purpose: The article presents the developed device and methods for monitoring the heart's condition using a nodal potential map. The proposal enables monitoring of the patient's health condition. Methods: Testing the heart's electrical activity in our device's case uses a "nodal potential map" BSPM (Body Surface Potential Mapping) technique. This is an extended version of the standard ECG measurement, which, instead of 12 leads, uses several dozen or even several hundred measurement electrodes placed in appropriate locations on the front and back of the chest. Results: The developed solution enables monitoring of heart function in a noninvasive way and is more precise than a standard ECG test. The collected measurements allowed us to determine the health and condition of the patient's heart—no anomalies were detected during its operation. Discussion: The next stage of work will be the development of machine learning algorithms trained on the measurements obtained from the vest. The results obtained so far indicate the potential of models classifying heart diseases.
REFERENCES (22)
1.
Bai, B., Li, X., Yang, C., Chen, X., Wang, X., Wu, Z. (2019). Prediction of atrial fibrillation using the recurrence complex network of body surface potential mapping signals. Technology and Health Care 27, 1–14. https://doi.org/10.3233/THC-19....
 
2.
Bergquist, J., Rupp, L., Zenger, B., Brundage, J., Busatto, A., MacLeod, R. (2021). Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. Hearts 2, 514–542. https://doi.org/10.3390/hearts....
 
3.
Chudáček, V., Lhotska, L., Kittnar, O., Mlcek, M. (2005). Feature extraction in body surface potential mapping. Presented at the Computers in Cardiology, 539–542. https://doi.org/10.1109/CIC.20....
 
4.
Doguet, M., Oster, J., Malka-Mahieu, H., Doyen, M., Odille, F. (2023). Body Surface Gastrointestinal Potential Mapping: A Simulation Framework to Evaluate Source Separation Algorithms. https://doi.org/10.1109/EMBC40....
 
5.
Gonçalves Marques, V., Rodrigo, M., Guillem, M., Salinet, J. (2020). Characterization of Atrial Arrhythmias in Body Surface Potential Mapping: A Computational Study. Computers in Biology and Medicine. https://doi.org/10.1016/j.comp....
 
6.
Ivonina, N., Ivonin, A., Roshchevskaya, I. (2024). Body Surface Potential Mapping during Ventricular Depolarization in Athletes with Prolonged PQ Interval after Exercise. Arquivos Brasileiros de Cardiologia 121.
 
7.
Ivonina, N., Roshchevskaya, I. (2023). Body Surface Potential Mapping in Highly Trained Athletes during Ventricular Depolarization. Journal of Evolutionary Biochemistry and Physiology 59, 1660–1671. https://doi.org/10.1134/S00220....
 
8.
Kiczek, B., Wójcik, D., Oleszek, M., Rymarczyk, T., Sikora, J., Baran, B., Przysucha, B. (2023). LETS – a Wearable Heart and Lung Monitoring Device for the Diagnosis of Cardiac and Respiratory Diseases. 60–62. https://doi.org/10.1145/354479....
 
9.
Kloosterman, M., Boonstra, M., Roudijk, R., Bourfiss, M., van der Schaaf, I., Velthuis, B., Eijsvogels, T., Kirkels, F., Dam, P., Loh, P. (2023). Body Surface Potential Mapping Detects Early Disease Onset in PKP2-Pathogenic Variant Carriers. Europace 25. https://doi.org/10.1093/europa....
 
10.
Konrad, T., Theis, C., Mollnau, H., Sonnenschein, S., Rostock, T. (2014). Body surface potential mapping for mapping and treatment of persistent atrial fibrillation. Herzschrittmachertherapie & Elektrophysiologie 25. https://doi.org/10.1007/s00399....
 
11.
Kusche, R., Oltmann, A., Graßhoff, J., Rostalski, P. (2022). Comfortable Body Surface Potential Mapping using a Dry Electrode Belt. 4253–4256. https://doi.org/10.1109/EMBC48....
 
12.
Martin, R., Hocini, M., Dubois, R., Derval, N., Jais, P., Haissaguerre, M. (2019). Non‐invasive Body Surface Potential Mapping of Reentrant Drivers in Human Atrial Fibrillation. 211–219. https://doi.org/10.1002/978111....
 
13.
Pandozi, C., Botto, G., Loricchio, M., D’Ammando, M., Lavalle, C., Giorno, G., Matteucci, A., Mariani, M., Nicolis, D., Segreti, L., Papa, A., Casale, M., Galeazzi, M., Russo, M., Belardino, N., Pelargonio, G., Aznaran, C., Malacrida, M., Maddaluno, F., Colivicchi, F. (2024). High-density mapping of Koch’s triangle during sinus rhythm and typical atrioventricular nodal re-entrant tachycardia, integrated with a direct recording of atrioventricular node structure potential. Journal of cardiovascular electrophysiology 35. https://doi.org/10.1111/jce.16....
 
14.
Przysucha, B., Rymarczyk, T., Wójcik, D. (2022). Classification of heart rhythm disturbances based on BSPM measurements. Journal of Physics: Conference Series 2408, 012003. https://doi.org/10.1088/1742-6....
 
15.
Rymarczyk, T., Wójcik, D., Maciura, Ł., Rosa, W., Bartosik, M. (2022). Body surface potential mapping time series recognition using convolutional and recurrent neural networks. Journal of Physics: Conference Series 2408, 012001. https://doi.org/10.1088/1742-6....
 
16.
Sedova, K., Dam, P., Blahova, M., Nečasová, L., Kautzner, J. (2023). Localization of the ventricular pacing site from BSPM and standard 12-lead ECG: a comparison study. Scientific Reports 13. https://doi.org/10.1038/s41598....
 
17.
Sedova, K., Dam, P., Blahova, M., Nečasová, L., Sramko, M., Kautzner, J. (2022). Accuracy of non-invasive anatomical lead localization in CRT patients: BSPM vs 12-lead ECG. EP Europace 24. https://doi.org/10.1093/europa....
 
18.
Sedova, K., Repin, K., Donin, G., Dam, P., Kautzner, J. (2021). Clinical Utility of Body Surface Potential Mapping in CRT Patients. Arrhythmia & Electrophysiology Review 10, 113–119. https://doi.org/10.15420/aer.2....
 
19.
Wójcik, D., Rymarczyk, T., Maciura, Ł., Oleszek, M., Adamkiewicz, P. (2023). Time Series Recognition with Convolutional and Recursive Neural Networks in BSPM. 1–6. https://doi.org/10.1109/IIPhDW....
 
20.
Wójcik, D., Rymarczyk, T., Oleszek, M., Maciura, Ł., Bednarczuk, P. (2021). Diagnosing Cardiovascular Diseases with Machine Learning on Body Surface Potential Mapping Data. 379–381. https://doi.org/10.1145/348573....
 
21.
Zhang, Q., Yang, C., Wang, D., Li, Z., Wu, Z., Zhu, X., Chen, Y. (2018). Atrial Fibrillation Prediction Based on the Rhythm Analysis of Body Surface Potential Mapping Signals. Journal of Medical Imaging and Health Informatics 8, 145–150. https://doi.org/10.1166/jmihi.....
 
22.
Zhong, G., Feng, X., Yuan, H., Yang, C. (2022). A 3D-CNN with temporal-attention block to predict the recurrence of atrial fibrillation based on body-surface potential mapping signals. Frontiers in Physiology 13. https://doi.org/10.3389/fphys.....
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top