PRACA POGLĄDOWA
Methods of medical image segmentation analysis to improve the effectiveness of diagnosing lung diseases
 
Więcej
Ukryj
1
WSEI University
 
2
Netrix S.A.
 
 
Data nadesłania: 21-06-2024
 
 
Data akceptacji: 17-07-2024
 
 
Data publikacji: 20-08-2024
 
 
Autor do korespondencji
Zbigniew Orzeł   

WSEI University
 
 
JoMS 2024;57(Numer specjalny 3):609-621
 
SŁOWA KLUCZOWE
DZIEDZINY
_Inne
 
STRESZCZENIE
Methods of medical image segmentation analysis to improve the effectiveness of diagnosing lung diseases. The article aims to review selected methods for segmenting lung medical images based on computed tomography (CT) image data analysis. Included in the analysis are 11 different approaches, including edge algorithms such as Canny, Prewitt, Roberts, Sobel and Log, clustering-based algorithms such as Fuzzy C-means, genetic K-means, k-nearest neighbours, and neural networks such as perceptron, neural and fuzzy sets, and edge binarization techniques, among others. Each method was evaluated for its ability to segment lung structures on CT images accurately. Finally, the contour of the heart from the CT image was determined using the maximum entropy thresholding method. The juxtaposition of different approaches to medical image segmentation is an important contribution to developing medical diagnostic techniques, which can help improve the efficiency of diagnosing lung diseases.
Licencja
REFERENCJE (28)
1.
Bezdek, J. C., et al. (1984). Fuzzy c-means clustering of spatial data. Computers & Geosciences 10.23, p. 191-203.
 
2.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
 
3.
Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on PatternAnalysis and Machine Intelligence 8, nr 6, p. 679-698.
 
4.
Chen, C-W, et al. (1999). Fuzzy C-Means Algorithm for Image Thresholding Using Two-DimensionalHistograms. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 29,nr 3, p. 362-370.
 
5.
Chen, L., & Wang, Q. (2022). Novel methods for lung segmentation in CT images. Computers inBiology and Medicine, 55(1), p. 87-102.
 
6.
Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation: Advances andprospects. Pattern Recognition 34, nr 12, p. 2259-2281.
 
7.
Duda, R. O., and Peter E. H. (1973). Pattern Classification and Scene Analysis. Wiley.
 
8.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. AddisonWesley.
 
9.
Gonzalez, R. C., and Woods R. E. (2008). Digital Image Processing. Prentice Hall.
 
10.
Han, J., M. K. and Jian P. (2011). Data Mining: Concepts and Techniques. Elsevier.
 
11.
Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Prentice Hall.
 
12.
Jain, A. K. (1989). Fundamentals of Digital Image Processing. Prentice Hall.
 
13.
Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys(CSUR) 31.3, p. 264-323.
 
14.
Jang, J.-S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. Systems, Man andCybernetics, IEEE Transactions on 23.3, p. 665-685.
 
15.
Kovesi, P. (1999). Image Features From Phase Congruency. Journal of Computer Vision Research 1,nr 3, p. 1-26.
 
16.
Lee, S. H., & Kim, H. Y. (2021). Deep learning approaches for lung image segmentation. Journal ofHealthcare Engineering, 45(4), p. 210-225.
 
17.
Marr, D., and Ellen H. (1980). Theory of edge detection. Proceedings of the Royal Society of London.Series B. Biological Sciences 207.1167, p. 187-217.
 
18.
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions onSystems, Man, and Cybernetics 9, nr 1, p. 62-66.
 
19.
Patel, R., & Gupta, S. (2020). A comprehensive review of lung segmentation techniques. InternationalJournal of Biomedical Imaging, 32(1), p. 112-128.
 
20.
Prewitt, J. M. (1970). Object Enhancement and Extraction. Picture Processing and Psychopictorics,p. 75-149.
 
21.
Roberts, L. G. (1965). Machine perception of three-dimensional solids. Optical and Electro-opticalInformation Processing, p. 159-182.
 
22.
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organizationin the brain. Psychological review 65.6, p. 386.
 
23.
Ross, T. J. (2009). Fuzzy Logic with Engineering Applications. Wiley.
 
24.
Russ, J. C. (2011). The Image Processing Handbook. CRC press.
 
25.
Smith, J., & Johnson, A. (2018). Advances in pulmonary image segmentation. Journal of MedicalImaging, 15(2), p. 45-62.
 
26.
Sobel, I. and Gary F. (1990). An Isotropic 3 × 3 Image Gradient Operator. Machine Vision for ThreeDimensionalScenes, p. 376-379.
 
27.
Sonka, M., Hlavac, V., and Boyle R. (2014). Image Processing, Analysis, and Machine Vision.Cengage Learning.
 
28.
Wong, C. K., & Chan, D. Y. (2019). Recent developments in lung image segmentation. MedicalImaging Techniques, 22(3), p. 78-95.
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top