REVIEW PAPER
Detection and analysis of disease entities based on lung conditions
 
More details
Hide details
1
WSEI University
 
2
Netrix S.A.
 
 
Submission date: 2024-06-21
 
 
Acceptance date: 2024-07-16
 
 
Publication date: 2024-08-20
 
 
Corresponding author
Adam Piwko   

WSEI University
 
 
JoMS 2024;57(Numer specjalny 3):580-593
 
KEYWORDS
TOPICS
_Other
 
ABSTRACT
The article presents a method for detecting and analysing disease entities associated with lung diseases. The results are related to work on the design of a medical diagnostic system based on impedance tomography. One of the key features of the solution is its ability to diagnose respiratory diseases, particularly chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and pneumothorax (PTX). The article describes the results of a classification model that effectively distinguishes between healthy and sick patients, achieving an impressive accuracy of 99.86%. This result underscores the robustness and reliability of the model. The conclusions of the presented research can serve as a basis for further work on improving diagnostic methods and introducing innovative healthcare solutions for patients with respiratory diseases, which may enable faster and more accurate diagnoses of lung diseases and provide more effective treatment and care for patients.
 
REFERENCES (28)
1.
Antó, J. M., Vermeire, P., Vestbo, J., Sunyer, J. (2001). Epidemiology of chronic obstructivepulmonary disease. European Respiratory Journal, 17, p. 982–994.
 
2.
Barton, E. C., Maskell, N. A., Walker, S. P. (2023). Expert Review on Spontaneous Pneumothorax:Advances, Controversies, and New Directions. Seminars in respiratory and critical caremedicine, 44(4), p. 426–436.
 
3.
Calfee, C. S., Eisner, M. D., Ware, L. B., et al. (2007). Trauma-associated lung injury differs clinicallyand biologically from acute lung injury due to other clinical disorders. Crit Care Med., 35(10),p. 2243–2250.
 
4.
Celli, B. R., MacNee, W. (2004). Standards for diagnosing and treating patients with COPD:a summary of the ATS/ERS position paper. Eur Respir J., 23(6), p. 932–946.
 
5.
Chen, T., Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System, Association for ComputingMachinery KDD’16, p. 785–794.
 
6.
Ding, W., Shen, Y., Yang, J., He, X., Zhang, M. (2011). Diagnosis of pneumothorax by radiographyand ultrasonography: a meta-analysis. Chest., 140(4), p. 859–866.
 
7.
Gattinoni, L., Pelosi, P., Suter, P. M., Pedoto, A., Vercesi, P., Lissoni, A. (1998). Acute respiratorydistress syndrome caused by pulmonary and extrapulmonary disease. Differentsyndromes? Am J Respir Crit Care Med., 158(1), p. 3–11.
 
8.
Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis,Management, and Prevention of Chronic Obstructive Pulmonary Disease (2022 Report).Available online (accessed on 27th November 2023): https://goldcopd.org/.
 
9.
Górecka, D., Jassem, E., Pierzchała, W., Śliwiński, P. (2012). Zalecenia Polskiego TowarzystwaChorób Płuc dotyczące rozpoznawania i leczenia przewlekłej obturacyjnej choroby płuc(POChP). Pneumonol. Alergol. Pol., 80, p. 220–254.
 
10.
Gupta, D., Hansell, A., Nichols, T., Duong, T., Ayres, J. G., Strachan, D. (2000). Epidemiology ofpneumothorax in England. Thorax, 55(8), p. 666–671.
 
11.
Jassem, E., Górecka, D. (2009). Ciężka i terminalna postać przewlekłej obturacyjnej choroby płuc,Severe and terminal chronic obstructive pulmonary disease. Pneumonol. Alergol. Pol., 77,p. 411–416.
 
12.
Khan, S., Manwaring, P. K., Borsic, A., Halter, J. R. (2015). FPGA-Based Voltage and Current DualDrive System for High Frame Rate Electrical Impedance Tomography. IEEE Transactions onMedical Imaging, 34, p. 888-901.
 
13.
Lichtenstein, D.A., Mezière, G.A. (2008). Relevance of lung ultrasound in the diagnosis of acuterespiratory failure, the BLUE protocol. Chest., 134(1), p. 117–125.
 
14.
Lynch, D. A., Austin, J. H. M., Hogg, J. C., et al. (2015). CT-Definable Subtypes of Chronic ObstructivePulmonary Disease. A Statement of the Fleischner Society. Radiology., 277(1), p. 192–205.
 
15.
MacDuff, A., Arnold, A., Harvey, J. (2010). BTS Pleural Disease Guideline Group. Management ofspontaneous pneumothorax: British Thoracic Society Pleural Disease Guideline. Thorax,65 Suppl 2, p. 1118–1131.
 
16.
McKnight, C. L., Burns, B. (2022). Pneumothorax Treasure Island (FL). StatPearls Publishing.
 
17.
Mets, O. M., Schmidt, M., Buckens, C. F., et al. (2013). Diagnosis of chronic obstructivepulmonary disease in lung cancer screening Computed Tomography scans: independentcontribution of emphysema, air trapping and bronchial wall thickening. Respir Res.
 
18.
Mierzejewski, K., Véjar A. (2016). A Platform for Joint Analysis of Biosignals Ensembles in RealTime Using Fpga. Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna, 22 (4), p.253-60.
 
19.
Neamu, R.F., Martin, G.S. (2013). Fluid management in acute respiratory distress syndrome. CurrOpin Crit Care, 19, p. 24–30.
 
20.
Odma opłucnowa Pulmonologia. Available online (accessed on 18th October 2016):http://www.mp.pl/social/articl....
 
21.
Przewlekła obturacyjna choroba płuc (POChP) – objawy i profilaktyka. Available online(accessed on 17th December 2021): http://www.mp.pl/social/articl....
 
22.
Tomicic, V., Cornejo, R. (2019). Lung monitoring with electrical impedance tomography: technicalconsiderations and clinical applications. J Thorac Dis; 11(7), p. 3122 – 3135.
 
23.
Véjar ,A., Rymarczyk, T., Paprzycki, P. (2019). Mutual Information and Delay Embeddings inPolysomnography Studies. International Interdisciplinary PhD Workshop (IIPhDW), p. 89–94.
 
24.
Vignon, P., Evrard, B., Asfar, P., et al. (2020). Fluid administration and monitoring in ARDS: whichmanagement? Intensive Care Med., 46(12), p. 2252–2264.
 
25.
Villar, J., Pérez-Méndez, L., Blanco, J., et al. (2013). A universal definition of ARDS: thePaO2/FiO2 ratio under a standard ventilatory setting–a prospective, multicenter validationstudy. Intensive Care Med., 39(4), p. 583–592.
 
26.
Wu, Y., Jiang, D., Bardill, A., de Gelidi, S., Bayford, H. R., Demosthenous, A. (2018). A High Frame RateWearable EIT System Using Active Electrode ASICs for Lung Respiration and Heart RateMonitoring. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, p. 3810–3820.
 
27.
Zarogoulidis, P., Kioumis, I., Pitsiou, G., et al. (2014). Pneumothorax: from definition to diagnosis andtreatment. J. Thorac Dis; 6(S4), p. 372-376.
 
28.
Zespół ostrej niewydolności oddechowej (ARDS) – European Lung Foundation. Availableonline(accessed on 27th July 2021), https://europeanlung.org/pl/in....
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top