PL EN
PRACA POGLĄDOWA
Analysis of ultrasonic measurement data from medical models
 
Więcej
Ukryj
1
Netrix S.A.
 
2
WSEI University
 
 
Data nadesłania: 28-06-2024
 
 
Data akceptacji: 19-07-2024
 
 
Data publikacji: 20-08-2024
 
 
Autor do korespondencji
Zbigniew Orzeł   

WSEI University
 
 
JoMS 2024;57(Numer specjalny 3):723-741
 
SŁOWA KLUCZOWE
DZIEDZINY
_Inne
 
STRESZCZENIE
This study's primary goal is to improve the accuracy and efficiency of acoustic wave propagation simulations using circular probe models in ultrasonography. This research aims to develop a detailed understanding of how variations in boundary conditions and wave characteristics influence the fidelity of ultrasound imaging. A range of simulation techniques were employed, focusing on non-dispersive and dispersive scenarios, to model acoustic wave behavior comprehensively. The study utilized Gaussian beamforming techniques and improved kernel functions to refine the resolution and decrease computational overhead. Various scenarios were simulated to analyze the impact of wave scattering and dispersion on imaging outcomes. The simulations demonstrated significant improvements in image resolution and accuracy. The refined methods allowed for more apparent distinctions in wave behavior under different boundary conditions, providing deeper insights into wave propagation dynamics. The results confirmed that controlling dispersion and scattering is critical for enhancing imaging quality. This research contributes to the field of ultrasonic imaging by presenting advanced simulation methods that offer more accurate and efficient imaging solutions. The study provides valuable insights into optimizing ultrasonic probes and imaging techniques by focusing on the impact of wave characteristics and boundary conditions. The findings have significant implications for medical diagnostics and material characterization, suggesting potential improvements in ultrasound technology for better patient outcomes and more precise material assessments.
 
REFERENCJE (22)
1.
Chen, X., Tang, S., Lu, Z., Wu, J., Duan, Y., Huang, S. C., & Tang, Q. (2019). IDiSC: A New Approach to IoT-Data-Intensive Service Components Deployment in Edge-Cloud-Hybrid System. IEEE Access, 7, 59172–59184. https://doi.org/10.1109/ACCESS....
 
2.
Cuadra, M. B., Cammoun, L., Butz, T., Cuisenaire, O., & Thiran, J. P. (2005). Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Transactions on Medical Imaging, 24(12). https://doi.org/10.1109/TMI.20....
 
3.
Gomes, J. C., Barbosa, V. A. F., Ribeiro, D. E., de Souza, R. E., & dos Santos, W. P. (2020). Electrical impedance tomography image reconstruction based on backprojection and extreme learning machines. Research on Biomedical Engineering, 36(4), 399–410. https://doi.org/10.1007/S42600....
 
4.
Kang, L., Zhang, C., Chen, P., Li, J., & Zhang, Y. (2016). Electromagnetic ultrasonic tomography of plate defects based on omnidirectional Lamb-wave EMATs. Proceedings of 2015 IEEE Far East NDT New Technology and Application Forum, FENDT 2015. https://doi.org/10.1109/FENDT.....
 
5.
Kłosowski, G. (2010). Design for a hybrid single multi-load AGV simulation system with artifficial intelligence controller. Applied Computer Science, 6(2), 81–94.
 
6.
Kłosowski, G., Gola, A., & Amila, T. (2018). Computational Intelligence in Control of AGV Multimodal Systems. IFAC-PapersOnLine, 51(11), 1421–1427. https://doi.org/10.1016/j.ifac....
 
7.
Kłosowski, G., Rymarczyk, T., Cieplak, T., Niderla, K., & Skowron, Ł. (2020). Quality assessment of the neural algorithms on the example of EIT-UST hybrid tomography. Sensors (Switzerland), 20(11). https://doi.org/10.3390/s20113....
 
8.
Koulountzios, P., Rymarczyk, T., & Soleimani, M. (2019). A Quantitative Ultrasonic Travel-Time Tomography to Investigate Liquid Elaborations in Industrial Processes. Sensors, 19(23), 5117. https://doi.org/10.3390/s19235....
 
9.
Kozlowski, E., Rymarczyk, T., & Klosowski, G. (2019). Logistic regression application to image reconstruction in UST. 2019 Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019. https://doi.org/10.23919/PTZE.....
 
10.
Liang, G., Dong, F., Kolehmainen, V., Vauhkonen, M., & Ren, S. (2021). Nonstationary Image Reconstruction in Ultrasonic Transmission Tomography Using Kalman Filter and Dimension Reduction. IEEE Transactions on Instrumentation and Measurement, 70. https://doi.org/10.1109/TIM.20....
 
11.
Liu, X., Zhang, T., Ye, J., Tian, X., Zhang, W., Yang, B., Dai, M., Xu, C., & Fu, F. (2022). Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography. Sensors 2022, Vol. 22, Page 9934, 22(24), 9934. https://doi.org/10.3390/S22249....
 
12.
Ning, B., Tian, Z., Mei, W., Chen, Z., Han, C., Li, S., Yuan, J., & Zhang, R. (2023). Beamforming Technologies for Ultra-Massive MIMO in Terahertz Communications. IEEE Open Journal of the Communications Society, 4. https://doi.org/10.1109/OJCOMS....
 
13.
Nordin, N., Idroas, M., Zakaria, Z., & Ibrahim, M. N. (2014). Tomographic image reconstruction of monitoring flaws on gas pipeline based on reverse ultrasonic tomography. 2014 5th International Conference on Intelligent and Advanced Systems (ICIAS), 1–6. https://doi.org/10.1109/ICIAS.....
 
14.
Oh, S., Kim, H. K., Jeong, T.-E., Kam, D.-H., & Ki, H. (2020). Deep-Learning-Based Predictive Architectures for Self-Piercing Riveting Process. IEEE Access, 8, 116254–116267. https://doi.org/10.1109/ACCESS....
 
15.
Qiu, W., Bouakaz, A., Konofagou, E. E., & Zheng, H. (2021). Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(1). https://doi.org/10.1109/TUFFC.....
 
16.
Rahman, F., Yunus, M., Azida, N., Azlan, N., Muhammad, J., Pusppanathan, F., Jumaah, C. L., Goh, A., Rahim, A., Ahmad, Y., Md, Y., & Rahim, H. A. (2013). Simulation Study of Bubble Detection Using Dual-Mode Electrical Resistance and Ultrasonic Transmission Tomography for Two-Phase Liquid and Gas. In Sensors & Transducers (Vol. 150). http://www.sensorsportal.com.
 
17.
Rymarczyk, T., Cieplak, T., Klosowski, G., & Kozlowski, E. (2019). Monitoring the natural environment with the use of IoT based system. 2019 Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019. https://doi.org/10.23919/PTZE.....
 
18.
Rymarczyk, T., Kozłowski, E., Kłosowski, G., & Niderla, K. (2019). Logistic Regression for Machine Learning in Process Tomography. Sensors 2019, Vol. 19, Page 3400, 19(15), 3400. https://doi.org/10.3390/S19153....
 
19.
Shan, H., Wiedeman, C., Wang, G., & Yang, Y. (2019). Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach. 4. https://doi.org/10.1117/12.252....
 
20.
Tutschek, B., Braun, T., Chantraine, F., & Henrich, W. (2017). Computed tomography and ultrasound to determine fetal head station. Ultrasound in Obstetrics & Gynecology, 49(2), 279–280. https://doi.org/10.1002/UOG.17....
 
21.
von Ramm, O. T., Smith, S. W., & Kisslo, J. A. (1978). Ultrasound Tomography of the Adult Brain. Ultrasound in Medicine, 261–267. https://doi.org/10.1007/978-1-....
 
22.
Yan, B., Wu, C., & Ma, H. (2017). Study on the method of nonmetallic defects based on ultrasonic tomography and morphology. 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), 1287–1292. https://doi.org/10.1109/ICIEA.....
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top