Purpose: This article presents a novel approach that leverages advanced data analytics and machine learning techniques to enhance marketing strategies. By precisely targeting and segmenting audience groups based on their descriptive profiles, the study aims to significantly improve the efficacy of marketing campaigns.
Methods: The study employs several clustering and community detection algorithms, including Louvain Community, Greedy Modularity, and Label Propagation. These methods are applied to diverse datasets to identify distinct groups within the audience that exhibit specific behavioral and preference patterns. The approach emphasizes data-driven decision-making, which involves making decisions based on the analysis of data rather than intuition or observation, to optimize marketing outcomes.
Results demonstrate that employing advanced clustering techniques can significantly refine the segmentation process, leading to more targeted marketing efforts. These methods successfully identified nuanced sub-groups within the datasets, which corresponded closely with customer behaviors and preferences variations, thereby allowing for more tailored marketing strategies.
Discussion: The study's findings underscore the imperative for marketers to embrace sophisticated analytical techniques. Machine learning has the potential to transform marketing strategies by providing deeper insights into customer segmentation. This research highlights the importance of staying ahead of the curve in the face of the complexities of consumer markets and evolving business environments.
Abdulhafedh, A. (2021). Incorporating K-means, Hierarchical Clustering and PCA in Customer Segmentation. Journal of City and Development, Vol. 3, 2021, Pages 12-30, 3(1), 12–30. https://doi.org/10.12691/JCD-3....
Daraghmeh, M., Agarwal, A., & Jararweh, Y. (2023). An ensemble clustering approach for modeling hidden categorization perspectives for cloud workloads. Cluster Computing. https://doi.org/10.1007/S10586....
Galiano Coronil, A. (2022). Behavior as an approach to identifying target groups from a social marketing perspective. International Review on Public and Nonprofit Marketing, 19(2), 265–287. https://doi.org/10.1007/S12208....
Gonzalez-Montesino, L., Grass-Boada, D. H., & Armannazas, R. (2023). Network Community Detection in Connectomics Data using Graph Theory. Proceedings – 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, 3459–3465. https://doi.org/10.1109/BIBM58....
Grover, V., Chiang, R. H. L., Liang, T. P., & Zhang, D. (2018). Creating Strategic Business Value from Big Data Analytics: A Research Framework. Journal of Management Information Systems, 35(2), 388–423. https://doi.org/10.1080/074212....
Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132. https://doi.org/10.1016/J.IJIN....
Halim, Z., Sargana, H. M., Aadam, Uzma, & Waqas, M. (2021). Clustering of graphs using pseudo-guided random walk. Journal of Computational Science, 51, 101281. https://doi.org/10.1016/J.JOCS....
Hicham, N., & Karim, S. (2022). Analysis of Unsupervised Machine Learning Techniques for an Efficient Customer Segmentation using Clustering Ensemble and Spectral Clustering. IJACSA) International Journal of Advanced Computer Science and Applications, 13(10). www.ijacsa.thesai.org.
Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/S11747....
Hung, P. D., Thuy Lien, N. T., & Ngoc, N. D. (2019). Customer segmentation using hierarchical agglomerative clustering. ACM International Conference Proceeding Series, Part F148384, 33–37. https://doi.org/10.1145/332264....
Lu, M., Guo, Z., & Gao, Z. (2023). Effect of intracranial electrical stimulation on dynamic functional connectivity in medically refractory epilepsy. Frontiers in Human Neuroscience, 17, 1295326. https://doi.org/10.3389/FNHUM.....
Mandapuram, M., Mandapuram, M., Gutlapalli, S. S., Reddy, M., & Bodepudi, A. (2020). Application of Artificial Intelligence (AI) Technologies to Accelerate Market Segmentation. Global Disclosure of Economics and Business, 9(2), 141–150. https://doi.org/10.18034/gdeb.....
Omidvar-Tehrani, B., Amer-Yahia, S., & Borromeo, R. M. (2019). User group analytics: hypothesis generation and exploratory analysis of user data. VLDB Journal, 28(2), 243–266. https://doi.org/10.1007/S00778....
Rachwał, A., Popławska, E., Gorgol, I., Cieplak, T., Pliszczuk, D., Skowron, Ł., & Rymarczyk, T. (2023). Determining the Quality of a Dataset in Clustering Terms. Applied Sciences 2023, Vol. 13, Page 2942, 13(5), 2942. https://doi.org/10.3390/APP130....
Rustamaji, H. C., Kusuma, W. A., Nurdiati, S., & Batubara, I. (2024). Community detection with Greedy Modularity disassembly strategy. Scientific Reports, 14(1). https://doi.org/10.1038/S41598....
Rymarczyk, P., Bednarczuk, P., Nowak, R., & Cieplak, T. (2021). Methods of Analyzing Consumer Behavior Based on Multi-Source Data. EUROPEAN RESEARCH STUDIES JOURNAL, XXIV(Special Issue 2), 335–345. https://doi.org/10.35808/ERSJ/....
Rymarczyk, P., Golabek, P., Sylwia, & Rzemieniak, M. (2021). Profiling and Segmenting Clients with the Use of Machine Learning Algorithms. EUROPEAN RESEARCH STUDIES JOURNAL, XXIV(Special Issue 2), 513–522. https://doi.org/10.35808/ERSJ/....
Tam, P. T., Son, D. M., Tan, T. Le, & Ha, H. (2021). Data Driven Customer Segmentation for Vietnamese SMEs in the Big Data Era. Macro Management & Public Policies, 3(2), 33–43. https://doi.org/10.30564/MMPP.....
Yoseph, F., Ahamed Hassain Malim, N. H., Heikkilä, M., Brezulianu, A., Geman, O., & Paskhal Rostam, N. A. (2020). The impact of big data market segmentation using data mining and clustering techniques. Journal of Intelligent & Fuzzy Systems, 38(5), 6159–6173. https://doi.org/10.3233/JIFS-1....
Zhuravka, F., Filatova, H., Šuleř, P., Wołowiec, T. (2021). State debt assessment and forecasting: time series analysis, Investment Management and Financial Innovations, 18(1), p. 65-75. doi:10.21511/imfi.18(1).2021.06.
Przetwarzamy dane osobowe zbierane podczas odwiedzania serwisu. Realizacja funkcji pozyskiwania informacji o użytkownikach i ich zachowaniu odbywa się poprzez dobrowolnie wprowadzone w formularzach informacje oraz zapisywanie w urządzeniach końcowych plików cookies (tzw. ciasteczka). Dane, w tym pliki cookies, wykorzystywane są w celu realizacji usług, zapewnienia wygodnego korzystania ze strony oraz w celu monitorowania ruchu zgodnie z Polityką prywatności. Dane są także zbierane i przetwarzane przez narzędzie Google Analytics (więcej).
Możesz zmienić ustawienia cookies w swojej przeglądarce. Ograniczenie stosowania plików cookies w konfiguracji przeglądarki może wpłynąć na niektóre funkcjonalności dostępne na stronie.