REVIEW PAPER
Advanced bladder analysis using ultrasonic and electrical impedance tomography with machine learning algorithms
 
More details
Hide details
1
Lublin University of Technology, Lublin, Poland
 
2
WSEI University, Lublin, Poland
 
 
Submission date: 2024-06-21
 
 
Acceptance date: 2024-07-17
 
 
Publication date: 2024-08-20
 
 
Corresponding author
Mariusz Sutryk   

WSEI University, Lublin, Poland
 
 
JoMS 2024;57(Numer specjalny 3):637-651
 
KEYWORDS
TOPICS
_Other
 
ABSTRACT
Purpose: The primary purpose of the study is to reconstruct the bladder based on the tomographic measurements obtained. Depending on the type of tomography used, two approaches are presented. Methods: In the first presented case, the measurements were collected using ultrasonic tomography, while in the second one, they were gathered with electrical impedance tomography. Deterministic methods and machine learning algorithms, such as Elastic Net, Least Angle Regression, and a Neural Network, were used to obtain the bladder reconstruction. Results: The bladder's position and size can be recognized based on the tomographic measurements of the UST and EIT. Both methods allow for its effective reconstruction. Discussion: The research results are satisfactory, but their effectiveness is debatable. Future studies will focus on comparing and optimizing both solutions regarding reconstruction time.
 
REFERENCES (22)
1.
Allerbo, O., Jonasson, J., Jörnsten, R. (2023). Elastic Gradient Descent, an Iterative Optimization Method Approximating the Solution Paths of the Elastic Net. Journal of Machine Learning Research 24, 1–53.
 
2.
Allu, R., Padmanabhuni, V. (2023). Convex Least Angle Regression Based LASSO Feature Selection and Swish Activation Function Model for Startup Survival Rate. Cybernetics and Information Technologies 23, 110–127. https://doi.org/10.2478/cait-2....
 
3.
An, Y., Wang, H., Li, J., Li, G., Ma, X., Du, Y., Tian, J. (2023). Reconstruction Based on Adaptive Group Least Angle Regression for Fluorescence Molecular Tomography. Biomedical Optics Express 14. https://doi.org/10.1364/BOE.48....
 
4.
Baran, B., Kozłowski, E., Majerek, D., Rymarczyk, T., Soleimani, M., Wójcik, D. (2023). Application of Machine Learning Algorithms to the Discretization Problem in Wearable Electrical Tomography Imaging for Bladder Tracking. Sensors 23(3), 1553. https://doi.org/10.3390/s23031....
 
5.
Benfante, V., Salvaggio, G., Ali, M., Cutaia, G., Salvaggio, L., Salerno, S., Busè, G., Tulone, G., Pavan, N., Raimondo, D., Tuttolomondo, A., Simonato, A., Comelli, A. (2024). Grading and Staging of Bladder Tumors Using Radiomics Analysis in Magnetic Resonance Imaging. 93–103. https://doi.org/10.1007/978-3-....
 
6.
Bilokon, O. (2023). Review and Analysis of the Development of Artificial Neural Networks. Cybernetics and Computer Technologies 68–80. https://doi.org/10.34229/2707-....
 
7.
Chamlal, H., Benzmane, A., Ouaderhman, T. (2024). Elastic net-based high dimensional data selection for regression. Expert Systems with Applications 244. https://doi.org/10.1016/j.eswa....
 
8.
Dziadosz, M., Mazurek, M., Hyka, O., Kowalski, M., Wójcik, D. (2024). Development and implementation of algorithms for measurement and reconstruction analysis in ultrasound tomography. ELECTROTECHNICAL REVIEW 1(4), 251–254. https://doi.org/10.15199/48.20....
 
9.
Eimen, R., Krzyzanowska, H., Scarpato, K., Ellerbee, A. (2024). Fiberscopic Pattern Removal for Optimal Coverage in 3D Bladder Reconstructions of Fiberscope Cystoscopy Videos. https://doi.org/10.1101/2024.0....
 
10.
Hanif, D. (2024). Gauss-Newton Method for Feedforward Artificial Neural Networks.
 
11.
Kalinkina, O., Tezikov, Y., Lipatov, I., Mayorova, M., Sreseli, G. (2024). Analysis of a clinical case of managing a patient with intraoperative bladder injury. Perm Medical Journal 41, 148–153. https://doi.org/10.17816/pmj41....
 
12.
Karakoyun, M. (2024). Artificial neural network training using a multi selection artificial algae algorithm 53, 101684. https://doi.org/10.1016/j.jest....
 
13.
Kłosowski, G., Rymarczyk, T., Soleimani, M. (2023). Brain Sensing with Ultrasound Tomography and Deep Learning Algorithms, in: Proceedings of the 29th Annual International Conference on Mobile Computing and Networking. Association for Computing Machinery, New York, NY, USA, 1–3.
 
14.
Kulisz, M., Kłosowski, G., Rymarczyk, T., Słoniec, J., Gauda, K., Cwynar, W. (2024). Optimizing the Neural Network Loss Function in Electrical Tomography to Increase Energy Efficiency in Industrial Reactors. Energies 17(3), 681. https://doi.org/10.3390/en1703....
 
15.
Li, B., Wang, Y., Li, L., Liu, Y. (2023). Research on Apple Origins Classification Optimization Based on Least-Angle Regression in Instance Selection. Agriculture 13, 1868. https://doi.org/10.3390/agricu....
 
16.
Merdas, H. (2024). Elastic Net – MLP – SMOTE (EMS) Based Model for Enhancing Stroke Prediction. Medinformatics. https://doi.org/10.47852/bonvi....
 
17.
Pan, Y. (2024). Different Types of Neural Networks and Applications: Evidence from Feedforward, Convolutional and Recurrent Neural Networks. Highlights in Science, Engineering and Technology 85, 247–255. https://doi.org/10.54097/6rn1w....
 
18.
Peng, Z., Shan, H., Yang, X., Li, S., Tang, D., Cao, Y., Shao, Q., Huo, W., Yang, Z. (2023). Weakly supervised learning-based 3D bladder reconstruction from 2D ultrasound images for bladder volume measurement. Medical physics 51. https://doi.org/10.1002/mp.166....
 
19.
Soleimani, M., Rymarczyk, T., Kłosowski, G. (2024). Ultrasound Brain Tomography: Comparison of Deep Learning and Deterministic Methods. IEEE Transactions on Instrumentation and Measurement 73, 1–12. https://doi.org/10.1109/TIM.20....
 
20.
Tolle, K., Marheineke, N. (2024). Nonlinear reduction using the extended group finite element method. Computational and Applied Mathematics 43, 1–18. https://doi.org/10.1007/s40314....
 
21.
Xiao, L., Zhang, Z., Huang, K., Jiang, J., Peng, Y. (2024). Noise Optimization in Artificial Neural Networks. IEEE Transactions on Automation Science and Engineering PP, 1–14. https://doi.org/10.1109/TASE.2....
 
22.
Zhang, Y., Ji, N., Wang, Z., Guo, C., Miao, X. (2024). Adaptive Finite Element Method for Magnetotelluric Forward Modeling with Gradient Recovery. https://doi.org/10.21203/rs.3.....
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top