Purpose: The research presented in this paper was conducted to obtain a detailed 3D model of the urinary bladder using electrical impedance tomography, a noninvasive tomographic technique.
Methods: Electrical impedance tomography (EIT) is an imaging technique that measures electrical impedance inside the human body. Many methods, including those based on physical models and machine learning, are used to reconstruct the considered 3D object using EIT. The work focuses on the Gauss-Newton algorithm in its generalized form.
Results: Three-dimensional reconstructions of the urinary bladder were obtained. The models are built with high accuracy and can be processed by subsequent algorithms.
Discussion: The constructed models can serve as the basis for correct diagnosis in medicine and as research material for subsequent work, for example, on the possibilities of 3D printing. Possible methods of obtaining even higher-quality reconstruction also remain to be considered.
Anwar, S., Bunker, M., Henry, T., Kouretas, P., Harris, I., Agarwal, A. (2023). 3D Modeling in Congenital Cardiac Interventions. 367–375. https://doi.org/10.1007/978-3-....
Beetz, M., Banerjee, A., Grau, V. (2024). Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks. IEEE Journal of Biomedical and Health Informatics PP, 1–10. https://doi.org/10.1109/JBHI.2....
Chen, Y. (2024). Research on prosthesis customization with 3D modeling and printing technology. Theoretical and Natural Science 29, 158–163. https://doi.org/10.54254/2753-....
Dziadosz, M., Mazurek, M., Stefaniak, B., Wójcik, D., Gauda, K. (2024). A comparative study of selected machine learning algorithms for electrical impedance tomography. ELECTROTECHNICAL REVIEW 1(4), 239–242. https://doi.org/10.15199/48.20....
Hegazy, M., Cho, Myung, Cho, Min, Lee, S. (2024). 3D Digital Modeling of Dental Casts from Their 3D CT Images with Scatter and Beam-Hardening Correction. Sensors 24. https://doi.org/10.3390/s24061....
Kudashkina, A., Kamyshanskaya, I., Pavelets, K., Rusanov, D., Kalyuzhnyy, S. (2024). 3D-modeling Capabilities in Assessing Resectability of Pancreatic Head Tumors. Journal of radiology and nuclear medicine 104, 244–254. https://doi.org/10.20862/0042-....
Lebedeva, A., Ryabov, V. (2022). Method of moments in the problem of inversion of the Laplace transform and its regularization. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 9, 46–52. https://doi.org/10.21638/spbu0....
Liu, Q., Wang, S., Wei, Y. (2024). A Gauss–Newton method for mixed least squares-total least squares problems. Calcolo 61, 1–27. https://doi.org/10.1007/s10092....
Loke, M., Dahlin, T. (2002). A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. Journal of Applied Geophysics 49, 149–162. https://doi.org/10.1016/S0926-....
Maréchal, P., Triki, F., Simo, W. (2023). Regularization of the inverse Laplace transform by mollification. Inverse Problems 40. https://doi.org/10.1088/1361-6....
Przysucha, B., Wójcik, D., Rymarczyk, T., Król, K., Kozłowski, E., Gąsior, M. (2023). Analysis of Reconstruction Energy Efficiency in EIT and ECT 3D Tomography Based on Elastic Net. Energies 16(3), 1490. https://doi.org/10.3390/en1603....
Rymarczyk, T., Mazurek, M., Hyka, O., Wójcik, D., Dziadosz, M., Kowalski, M. (2024). Poster Abstract: A Wearable for Non-Invasive Monitoring and Diagnosing Functional Disorders of the Lower Urinary Tract, in: Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems, SenSys ’23. Association for Computing Machinery, New York, NY, USA, 510–511. https://doi.org/10.1145/362568....
Siregar, R., Tulus, T., Ramli, M. (2018). Analysis Local Convergence of Gauss-Newton Method. IOP Conference Series: Materials Science and Engineering 300, 012044. https://doi.org/10.1088/1757-8....
Sokolov, Y., Topilin, O., Airapetyan, M., Sukhodolskaya, O., Vydysh, S. (2024). The clinical use of 3D-modeling in pediatric surgery. Archives of Pediatrics and Pediatric Surgery 1, 24–30. https://doi.org/10.31146/2949-....
Yudin, N. (2021). Modified Gauss-Newton method for solving a smooth system of nonlinear equations. Computer Research and Modeling 13, 697–723. https://doi.org/10.20537/2076-....
Przetwarzamy dane osobowe zbierane podczas odwiedzania serwisu. Realizacja funkcji pozyskiwania informacji o użytkownikach i ich zachowaniu odbywa się poprzez dobrowolnie wprowadzone w formularzach informacje oraz zapisywanie w urządzeniach końcowych plików cookies (tzw. ciasteczka). Dane, w tym pliki cookies, wykorzystywane są w celu realizacji usług, zapewnienia wygodnego korzystania ze strony oraz w celu monitorowania ruchu zgodnie z Polityką prywatności. Dane są także zbierane i przetwarzane przez narzędzie Google Analytics (więcej).
Możesz zmienić ustawienia cookies w swojej przeglądarce. Ograniczenie stosowania plików cookies w konfiguracji przeglądarki może wpłynąć na niektóre funkcjonalności dostępne na stronie.